PARP-1, a determinant of cell survival in response to DNA damage

Slides:



Advertisements
Similar presentations
Nucleotide Pool Depletion Induces G-Quadruplex-Dependent Perturbation of Gene Expression Charikleia Papadopoulou, Guillaume Guilbaud, Davide Schiavone,
Advertisements

Nonresonant Confocal Raman Imaging of DNA and Protein Distribution in Apoptotic Cells N. Uzunbajakava, A. Lenferink, Y. Kraan, E. Volokhina, G. Vrensen,
Quiescent Hematopoietic Stem Cells Accumulate DNA Damage during Aging that Is Repaired upon Entry into Cell Cycle Isabel Beerman, Jun Seita, Matthew A.
PARP-3 and APLF Function Together to Accelerate Nonhomologous End-Joining Stuart L. Rulten, Anna E.O. Fisher, Isabelle Robert, Maria C. Zuma, Michele Rouleau,
Recognizing Protein-Ligand Binding Sites by Global Structural Alignment and Local Geometry Refinement Ambrish Roy, Yang Zhang Structure Volume 20, Issue.
FIGURE S1 S1.c Scr. iPARG 30 nM H2O2 PAR iPARP-1 60 nM DAPI S1.a S1.b
Alexander Loewer, Galit Lahav  Cell 
Susanne Wingert, Michael A. Rieger  Experimental Hematology 
Causes, effects and molecular mechanisms of testicular heat stress
Hepatitis C Virus NS5A Protein–A Master Regulator?
AXIN Shapes Tankyrase ARChitecture
Genome-editing Technologies for Gene and Cell Therapy
Volume 57, Issue 3, Pages (March 2000)
Volume 49, Issue 1, Pages 3-5 (January 2013)
Loading Rho to Terminate Transcription
Beyond Making Ends Meet: DNA-PK, Metabolism, and Aging
Oh what a tangled web it weaves: BRCA1 and DNA decatenation
Beyond Making Ends Meet: DNA-PK, Metabolism, and Aging
Hepatitis C Virus NS5A Protein–A Master Regulator?
Volume 104, Issue 6, Pages (March 2001)
Jane M. Bradbury, Stephen P. Jackson
IL-33 Raises Alarm Immunity Volume 31, Issue 1, Pages 5-7 (July 2009)
Adding Specificity to Artificial Transcription Activators
Denny Sakkas, Ph.D., Juan G. Alvarez, M.D., Ph.D. 
Volume 141, Issue 6, Pages (December 2011)
Epigenetics Drives RAGs to Recombination Riches
Alison A. Laing, Christine J. Harrison, Brenda E. S
Quiescence regulators for hematopoietic stem cell
The CULt of Caspase-8 Ubiquitination
PAR-1 for the Course of Neurodegeneration
Prion-like Domains Program Ewing’s Sarcoma
Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation  Eva Barkauskaite, Gytis Jankevicius,
Lucas T. Gray, Alan M. Weiner  Molecular Cell 
Xiaoou Zhou, Malcolm K. Brenner  Experimental Hematology 
miR-34a and the Cardiomyopathy of Senescence: SALT PNUTS, SALT PNUTS!
Building a Metal Binding Domain, One Half at a Time
ATM Creates a Veil of Transcriptional Silence
Susanne Wingert, Michael A. Rieger  Experimental Hematology 
Hip1 and Hippi Participate in a Novel Cell Death-Signaling Pathway
Cancer Susceptibility and the Functions of BRCA1 and BRCA2
Development of Androgen Receptor Antagonists with Promising Activity in Castration- Resistant Prostate Cancer  Howard C. Shen, Steven P. Balk  Cancer Cell 
Genome-editing Technologies for Gene and Cell Therapy
Serine ADP-Ribosylation Depends on HPF1
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
NAD+-Dependent Modulation of Chromatin Structure and Transcription by Nucleosome Binding Properties of PARP-1  Mi Young Kim, Steven Mauro, Nicolas Gévry,
DNA Double-Strand Breaks Come into Focus
Translocation Mapping Exposes the Risky Lifestyle of B Cells
A CRISPR Approach to Gene Targeting
PARP Goes Transcription
DNA repair: Rad52 – the means to an end
Inside This Issue Experimental Hematology
Sietske T. Bakker, Emmanuelle Passegué  Experimental Hematology 
Apoptosis Cell Volume 108, Issue 2, Pages (January 2002)
Keeping p53 in Check: A High-Stakes Balancing Act
Tumor necrosis factor α in the onset and progression of leukemia
Golgi Feels DNA’s Pain Cell
Christoph Becker, Alastair J. Watson, Markus F. Neurath 
SAMHD1 Sheds Moonlight on DNA Double-Strand Break Repair
Rad52  Uffe H. Mortensen, Michael Lisby, Rodney Rothstein 
Raga Krishnakumar, W. Lee Kraus  Molecular Cell 
A possible mechanism of renal cell death after ischemia/reperfusion
Centrosomes: PIDDosome Joins the Counting Game
Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development  Summer B. Thyme, Alexander F. Schier 
Reconstitution of an SOS Response Pathway
Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy  Sarah R. Hengel, M. Ashley Spies, Maria Spies 
Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases  Johnny H. Hu, Kevin M. Davis, David R.
Volume 4, Issue 4, Pages (October 2003)
Xiaowu Gai, Daniel F. Voytas  Molecular Cell 
Repair kinetics of radiation-induced DNA damage under microgravity conditions. Repair kinetics of radiation-induced DNA damage under microgravity conditions.
Prolyl Isomerases and Nuclear Function
Presentation transcript:

PARP-1, a determinant of cell survival in response to DNA damage Véronique J. Bouchard, Michèle Rouleau, Guy G. Poirier  Experimental Hematology  Volume 31, Issue 6, Pages 446-454 (June 2003) DOI: 10.1016/S0301-472X(03)00083-3

Figure 1 Structure of PARP-1. PARP-1 can be divided in 3 main domains: a DNA-binding domain (DBD) with 2 zinc fingers (Zn I and Zn II), an automodification domain with a BRCT motif, and a catalytic domain with the NAD+-binding site. The nuclear localization signal (NLS) is located between the DBD and the automodification domain. It comprises the DEVD cleavage site recognized by caspases 3 and 7. Experimental Hematology 2003 31, 446-454DOI: (10.1016/S0301-472X(03)00083-3)

Figure 2 Model for DNA damage signaling by PARP-1. PARP-1 binds on DNA strand breaks and is activated. It then modifies factors to induce a cell cycle arrest and allow DNA repair. In case of massive DNA damage, PARP-1 can deplete the NAD+ pool and induce necrosis or send an apoptotic signal. Experimental Hematology 2003 31, 446-454DOI: (10.1016/S0301-472X(03)00083-3)