Volume 11, Issue 9, Pages (September 2004)

Slides:



Advertisements
Similar presentations
Structural Basis of Substrate Methylation and Inhibition of SMYD2
Advertisements

Volume 9, Issue 8, Pages (August 2002)
Volume 15, Issue 4, Pages (April 2008)
Crystal Structure of the Tandem Phosphatase Domains of RPTP LAR
Indi Trehan, Federica Morandi, Larry C Blaszczak, Brian K Shoichet 
Volume 7, Issue 9, Pages (September 2000)
Volume 21, Issue 1, Pages (January 2013)
Volume 20, Issue 6, Pages (June 2013)
Crystallographic Structure of SurA, a Molecular Chaperone that Facilitates Folding of Outer Membrane Porins  Eduard Bitto, David B. McKay  Structure 
Volume 11, Issue 10, Pages (October 2004)
Volume 3, Issue 3, Pages (March 1999)
Volume 14, Issue 3, Pages (March 2001)
Volume 15, Issue 8, Pages (August 2007)
Volume 14, Issue 11, Pages (November 2007)
Volume 11, Issue 12, Pages (December 2003)
Volume 13, Issue 10, Pages (October 2005)
Volume 124, Issue 2, Pages (January 2006)
Volume 19, Issue 7, Pages (July 2012)
Volume 19, Issue 10, Pages (October 2012)
Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases  Yingwu Xu, Girija Bhargava, Hao Wu,
Crystal Structure of the Soluble Form of Equinatoxin II, a Pore-Forming Toxin from the Sea Anemone Actinia equina  Alekos Athanasiadis, Gregor Anderluh,
Structure of RGS4 Bound to AlF4−-Activated Giα1: Stabilization of the Transition State for GTP Hydrolysis  John J.G. Tesmer, David M. Berman, Alfred G.
Volume 15, Issue 10, Pages (October 2008)
Intramolecular interactions of the regulatory domains of the Bcr–Abl kinase reveal a novel control mechanism  Hyun-Joo Nam, Wayne G Haser, Thomas M Roberts,
Volume 14, Issue 5, Pages (May 2007)
Glycerol Dehydrogenase
Xiao Tao, Zhiru Yang, Liang Tong  Structure 
Volume 20, Issue 5, Pages (May 2012)
Volume 13, Issue 10, Pages (October 2006)
Volume 17, Issue 8, Pages (August 2010)
Volume 6, Issue 3, Pages (September 2000)
Catalytic Center Assembly of HPPK as Revealed by the Crystal Structure of a Ternary Complex at 1.25 Å Resolution  Jaroslaw Blaszczyk, Genbin Shi, Honggao.
Crystal Structure of an Inactive Akt2 Kinase Domain
Volume 21, Issue 5, Pages (May 2014)
Crystal Structure of PMM/PGM
Volume 15, Issue 10, Pages (October 2008)
Volume 4, Issue 5, Pages (November 1999)
Volume 16, Issue 10, Pages (October 2008)
Volume 17, Issue 3, Pages (March 2009)
The 1.9 Å Structure of α-N-Acetylgalactosaminidase
Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum  Niraj H. Tolia, Eric J. Enemark, B. Kim Lee.
Volume 14, Issue 11, Pages (November 2007)
Volume 10, Issue 11, Pages (November 2002)
Volume 9, Issue 8, Pages (August 2002)
Getting the Adrenaline Going
Volume 21, Issue 6, Pages (June 2014)
Volume 20, Issue 11, Pages (November 2013)
Volume 21, Issue 1, Pages (January 2014)
Volume 10, Issue 6, Pages (June 2002)
Masaru Goto, Rie Omi, Noriko Nakagawa, Ikuko Miyahara, Ken Hirotsu 
Transformation of MutL by ATP Binding and Hydrolysis
Qun Liu, Qingqiu Huang, Xin Gen Lei, Quan Hao  Structure 
Yijin Liu, David M.J. Lilley  Biophysical Journal 
Volume 85, Issue 5, Pages (May 1996)
Volume 14, Issue 12, Pages (December 2006)
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Ethan B. Butler, Yong Xiong, Jimin Wang, Scott A. Strobel 
Structural Basis of Swinholide A Binding to Actin
Structural Role of the Vps4-Vta1 Interface in ESCRT-III Recycling
Volume 11, Issue 4, Pages (April 2004)
Volume 20, Issue 1, Pages (January 2012)
Volume 10, Issue 4, Pages (April 2003)
Volume 15, Issue 6, Pages (June 2008)
Volume 27, Issue 1, Pages (July 2007)
Volume 9, Issue 8, Pages (August 2002)
Volume 9, Issue 11, Pages (November 2002)
Volume 19, Issue 2, Pages (February 2012)
Volume 16, Issue 6, Pages (December 2004)
Volume 20, Issue 5, Pages (May 2012)
Stanley J Watowich, John J Skehel, Don C Wiley  Structure 
Presentation transcript:

Volume 11, Issue 9, Pages 1317-1324 (September 2004) Reactivity and Chemical Synthesis of L-Pyrrolysine— the 22nd Genetically Encoded Amino Acid  Bing Hao, Gang Zhao, Patrick T. Kang, Jitesh A. Soares, Tsuneo K. Ferguson, Judith Gallucci, Joseph A. Krzycki, Michael K. Chan  Chemistry & Biology  Volume 11, Issue 9, Pages 1317-1324 (September 2004) DOI: 10.1016/j.chembiol.2004.07.011

Figure 1 Simplified Stick Diagram of L-pyrrolysine Left, orientation 1 in the absence of bound ligand; right, orientation 2 and bound to ammonia. Chemistry & Biology 2004 11, 1317-1324DOI: (10.1016/j.chembiol.2004.07.011)

Figure 2 Overall Fold of MtmB Methyl-hydroxylamine Complex with α Helices in Red, and β Sheets in Yellow The L-pyrrolysine amino acid bound to methyl-hydroxylamine is shown in stick form with carbons colored in gray, oxygens in red, and nitrogens in blue. Chemistry & Biology 2004 11, 1317-1324DOI: (10.1016/j.chembiol.2004.07.011)

Figure 3 MtmB Sulfite Complex Active Site Left, Fo − Fc omit map (blue, 2σ; red, 6σ) with fit to orientation 2, and (middle) Fo − Fc omit map (green, 4σ; purple 12σ) with fit to orientation 2. Carbons are colored in tan, oxygens in red, and nitrogens in cyan. Right, overlap of orientation 1 (tan) and orientation 2 (blue). Chemistry & Biology 2004 11, 1317-1324DOI: (10.1016/j.chembiol.2004.07.011)

Figure 4 MtmB Active Site Following Reaction with Hydroxylamines Left product, 2Fo − Fc electron density map (1.5σ) of MtmB hydroxylamine complex. Middle, Stick diagram of L-pyrrolysine bound to hydroxylamine. Right, 2Fo − Fc electron density map (1.5σ) of MtmB methyl-hydroxylamine complex. Carbons are colored in tan, oxygens in red, and nitrogens in cyan. Chemistry & Biology 2004 11, 1317-1324DOI: (10.1016/j.chembiol.2004.07.011)

Figure 5 Synthetic Scheme Used to Synthesize L-Pyrrolysine Reagents and conditions: (a) TFAA, Et3N, CH2Cl2 rt, 85%; (b) H2, Pd/C, MeOH, rt, 99%; (c) iPrOH, KOH, BnCl, rt, 83%; (d) SOCl2, CH2Cl2, then o-aminobenzophenone, rt, 89%; (e) glycine, Ni(NO3)2, KOH, MeOH, reflux, 96%; (f) DBU, CH2Cl2, crotonaldehyde, rt, 97%; (g) HCl (concd.), MeOH, reflux, then TMSCl, MeOH, rt, 43%; (h) LiOH, THF:H2O (3:1), rt, ∼100%; (i) 2, DPPA, Et3N, DMF, rt, 31%; (j) LiOH, THF-MeOH-H2O (2:2:1), rt, 98%. Chemistry & Biology 2004 11, 1317-1324DOI: (10.1016/j.chembiol.2004.07.011)

Figure 6 Potential Insight into the Role of the C4-Substituent Top, treatment of L-pyrrolysine with NaOD in MeOH leads to deprotonation, but no epimerization. Bottom, one possible pathway for L-pyrrolysine biosynthesis based on the chiral stability provided by the C4-substituent. Chemistry & Biology 2004 11, 1317-1324DOI: (10.1016/j.chembiol.2004.07.011)