Posterior Localization of Dynein and Dorsal-Ventral Axis Formation Depend on Kinesin in Drosophila Oocytes  Robert P. Brendza, Laura R. Serbus, William.

Slides:



Advertisements
Similar presentations
Volume 7, Issue 7, Pages (July 1997)
Advertisements

Kálmán Somogyi, Pernille Rørth  Developmental Cell 
Oogenesis We then dissect ovaries from the created fly and use the egg chambers from stages in midoogenesis to visualize endogenous.
Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient
Pralay Majumder, George Aranjuez, Joseph Amick, Jocelyn A. McDonald 
Volume 8, Issue 3, Pages (March 2005)
The Salvador-Warts-Hippo Pathway Is Required for Epithelial Proliferation and Axis Specification in Drosophila  Carine Meignin, Ines Alvarez-Garcia, Ilan.
Filopodia-like Actin Cables Position Nuclei in Association with Perinuclear Actin in Drosophila Nurse Cells  Sven Huelsmann, Jari Ylänne, Nicholas H.
D-cbl, a Negative Regulator of the Egfr Pathway, Is Required for Dorsoventral Patterning in Drosophila Oogenesis  Li-Mei Pai, Gail Barcelo, Trudi Schüpbach 
Stratum, a Homolog of the Human GEF Mss4, Partnered with Rab8, Controls the Basal Restriction of Basement Membrane Proteins in Epithelial Cells  Olivier.
Volume 20, Issue 1, Pages (July 2017)
Drosophila gurken (TGFα) mRNA Localizes as Particles that Move within the Oocyte in Two Dynein-Dependent Steps  Nina MacDougall, Alejandra Clark, Eilidh.
Volume 15, Issue 4, Pages (February 2005)
Drosophila wingless and Pair-Rule Transcripts Localize Apically by Dynein-Mediated Transport of RNA Particles  Gavin S. Wilkie, Ilan Davis  Cell  Volume.
Volume 18, Issue 21, Pages (November 2008)
Volume 27, Issue 19, Pages e3 (October 2017)
Pralay Majumder, George Aranjuez, Joseph Amick, Jocelyn A. McDonald 
Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis  Dmitry Nashchekin, Artur Ribeiro.
Nikhila S. Tanneti, Kathryn Landy, Eric F. Joyce, Kim S. McKim 
Douglas J Guarnieri, G.Steven Dodson, Michael A Simon  Molecular Cell 
The GSL biosynthetic pathway is active in both germ line and follicle cells. The GSL biosynthetic pathway is active in both germ line and follicle cells.
Volume 3, Issue 5, Pages (November 2002)
Germ cell-less Acts to Repress Transcription during the Establishment of the Drosophila Germ Cell Lineage  Judith L. Leatherman, Lissa Levin, Julie Boero,
Live Imaging of Endogenous RNA Reveals a Diffusion and Entrapment Mechanism for nanos mRNA Localization in Drosophila  Kevin M. Forrest, Elizabeth R.
Volume 16, Issue 11, Pages (June 2006)
Integrin Signaling Regulates Spindle Orientation in Drosophila to Preserve the Follicular- Epithelium Monolayer  Ana Fernández-Miñán, María D. Martín-Bermudo,
Volume 13, Issue 4, Pages (October 2007)
Volume 12, Issue 23, Pages (December 2002)
Volume 21, Issue 13, Pages (July 2011)
Volume 14, Issue 7, Pages (April 2004)
Vitaly Zimyanin, Nick Lowe, Daniel St Johnston  Current Biology 
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
From Stem Cell to Embryo without Centrioles
Dorothy A. Lerit, Elizabeth R. Gavis  Current Biology 
Rongwen Xi, Jennifer R. McGregor, Douglas A. Harrison 
Differential Activation of the DNA Replication Checkpoint Contributes to Asynchrony of Cell Division in C. elegans Embryos  Michael Brauchle, Karine Baumer,
Volume 10, Issue 4, Pages (April 2006)
Mark Van Doren, Anne L. Williamson, Ruth Lehmann  Current Biology 
Drosophila gurken (TGFα) mRNA Localizes as Particles that Move within the Oocyte in Two Dynein-Dependent Steps  Nina MacDougall, Alejandra Clark, Eilidh.
RNAi of the receptor tyrosine phosphatase HmLAR2 in a single cell of an intact leech embryo leads to growth-cone collapse  Michael W. Baker, Eduardo R.
Di Jiang, Edwin M. Munro, William C. Smith  Current Biology 
Yoshinori Tomoyasu, Yasuyuki Arakane, Karl J. Kramer, Robin E. Denell 
The Role of Oocyte Transcription, the 5′UTR, and Translation Repression and Derepression in Drosophila gurken mRNA and Protein Localization  Carol Saunders,
Volume 7, Issue 7, Pages (July 1997)
Mariana Melani, Kaylene J. Simpson, Joan S. Brugge, Denise Montell 
Volume 6, Issue 5, Pages (May 2004)
Stefano De Renzis, J. Yu, R. Zinzen, Eric Wieschaus  Developmental Cell 
Yuri Oleynikov, Robert H. Singer  Current Biology 
Volume 134, Issue 5, Pages (September 2008)
Volume 15, Issue 3, Pages (September 2008)
Drosophila oogenesis Current Biology
Aeri Cho, Masato Kato, Tess Whitwam, Ji Hoon Kim, Denise J. Montell 
Volume 6, Issue 5, Pages (May 2004)
Sarah E. Siegrist, Chris Q. Doe  Cell 
The Drosophila Homolog of C
Paracrine Signaling through the JAK/STAT Pathway Activates Invasive Behavior of Ovarian Epithelial Cells in Drosophila  Debra L. Silver, Denise J. Montell 
Volume 8, Issue 9, Pages (April 1998)
Oocyte polarity is disrupted in the presence of FP41 mutant PFCs
The Origin of Centrosomes in Parthenogenetic Hymenopteran Insects
Gene Amplification as a Developmental Strategy
TAC-1, a Regulator of Microtubule Length in the C. elegans Embryo
The receptor tyrosine phosphatase Dlar and integrins organize actin filaments in the Drosophila follicular epithelium  Jack Bateman, R.Srekantha Reddy,
Salvador-Warts-Hippo Signaling Promotes Drosophila Posterior Follicle Cell Maturation Downstream of Notch  Cédric Polesello, Nicolas Tapon  Current Biology 
The Drosophila SDE3 Homolog armitage Is Required for oskar mRNA Silencing and Embryonic Axis Specification  Heather A Cook, Birgit S Koppetsch, Jing Wu,
Novel Functions for Integrins in Epithelial Morphogenesis
Volume 12, Issue 23, Pages (December 2002)
Volume 18, Issue 18, Pages (September 2008)
The Cytoplasmic Dynein and Kinesin Motors Have Interdependent Roles in Patterning the Drosophila Oocyte  Jason E Duncan, Rahul Warrior  Current Biology 
The Drosophila Microtubule-Associated Protein Mini Spindles Is Required for Cytoplasmic Microtubules in Oogenesis  Woongjoon Moon, Tulle Hazelrigg  Current.
Drosophila wingless and Pair-Rule Transcripts Localize Apically by Dynein-Mediated Transport of RNA Particles  Gavin S. Wilkie, Ilan Davis  Cell  Volume.
Presentation transcript:

Posterior Localization of Dynein and Dorsal-Ventral Axis Formation Depend on Kinesin in Drosophila Oocytes  Robert P. Brendza, Laura R. Serbus, William M. Saxton, Joseph B. Duffy  Current Biology  Volume 12, Issue 17, Pages 1541-1545 (September 2002) DOI: 10.1016/S0960-9822(02)01108-9

Figure 1 Kinesin I Localization Confocal fluorescence images of fixed egg chambers stained with anti-Drosophila Khc are oriented with posterior oriented downward. (A) Germarium and early egg chambers. (B) Split focal planes from a stage-7 egg chamber. (C) A stage-8 egg chamber showing early accumulation of Khc at the posterior pole (short arrow) and the anterodorsal corner (long arrow) of the oocyte. (D) A stage-9 egg chamber showing Khc accumulation at the posterior pole and at the anterodorsal corner adjacent to the oocyte nucleus (n). (E) A stage-10A egg chamber with clones of Khc27/Khc27 follicle cells, one of which eliminates Khc expression in the posterior polar follicle cells (arrowhead). For a through-focus series of (D), see the Supplementary Material available with this article online (Movie 1). The scale bars represent 15 μm. (fcl, follicle cell layer; pfc, polar follicle cells; nn, nurse cell nucleus; o, oocyte). Current Biology 2002 12, 1541-1545DOI: (10.1016/S0960-9822(02)01108-9)

Figure 2 Effects of Germline Khc Disruption on Dynein Distribution Fixed egg chambers were dual stained with anti-Khc and anti-cytoplasmic dynein heavy chain antibodies. (A) A stage-10A wild-type egg chamber showing Khc distribution. (B) The same egg chamber showing dynein distribution. (C) A stage-10A chamber with a Khc null germline (Khc27/Khc27) showing little Khc staining in the oocyte or nurse cells. (D) The same egg chamber showing dynein distribution. For unknown reasons, both antisera stained the nucleus in Khc null oocytes. This phenomenon has been seen previously with anti-cDhc staining in other mutant backgrounds [13]. (nc, nurse cell cytoplasm; o, oocyte; fcl, follicle cell layer; n, oocyte nucleus). Current Biology 2002 12, 1541-1545DOI: (10.1016/S0960-9822(02)01108-9)

Figure 3 Effects of Germline Khc Disruption on gurken mRNA Localization and Nuclear Position (A–F) In situ hybridization with a gurken-specific RNA probe is shown for egg chambers from wild-type (top row) or from Khc null germline clones (bottom row). Posterior is oriented downward. (A) and (D) show stage-6 egg chambers, (B) and (E) show stage-8 egg chambers, and (C) and (F) show stage-10 egg chambers. The positions of oocyte nuclei are marked with white asterisks. Nuclear mislocalization as seen in (F) was not a penetrant phenotype, being observed in about 50% of stage-9 and -10 oocytes (see Figure 4). The scale bars represent 50 μm. Current Biology 2002 12, 1541-1545DOI: (10.1016/S0960-9822(02)01108-9)

Figure 4 Frequencies of Mislocalization for gurken mRNA and the Oocyte Nucleus in Egg Chambers from Wild-Type and Khc Null Germline Clones (A) Nuclear position: black bar, nucleus in apparent contact with the anterior margin of the oocyte; shaded bar, nucleus close to the anterior margin, but not clearly in contact with it; open bar, nucleus at least one nuclear diameter away from the anterior margin. (B) Localization of gurken mRNA: black bar, strong localization to one spot along the anterior margin (e.g., Figure 3C); shaded bar, widely distributed anterior but with a focused concentration somewhere along the anterior margin; open bar, widely distributed anterior with no focused areas (e.g., Figures 3B, 3E, and 3F). Sample sizes are noted above each bar. Current Biology 2002 12, 1541-1545DOI: (10.1016/S0960-9822(02)01108-9)