Lead accumulation in tidemark of articular cartilage

Slides:



Advertisements
Similar presentations
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
Advertisements

C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
Optical imaging of mouse articular cartilage using the glycosaminoglycans binding property of fluorescent-labeled octaarginine  K. Inagawa, T. Oohashi,
Prevalence of labral tears and cartilage loss in patients with mechanical symptoms of the hip: evaluation using MR arthrography  G. Neumann, M.D., A.D.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
2D and 3D MOCART scoring systems assessed by 9
Chondroitin sulphate: an effective joint lubricant?
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis  D. Bobinac, M. Marinovic, E.
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
R.E. Fransès, D.F. McWilliams, P.I. Mapp, D.A. Walsh 
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
Evaluation of cartilage matrix disorders by T2 relaxation time in patients with hip dysplasia  T. Nishii, M.D., H. Tanaka, M.D., N. Sugano, M.D., T. Sakai,
Differential accumulation of lead and zinc in double-tidemarks of articular cartilage  A. Roschger, J.G. Hofstaetter, B. Pemmer, N. Zoeger, P. Wobrauschek,
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
Positron emission tomography with 18F-FDG in osteoarthritic knee
Quantitative assessment of articular cartilage morphology via EPIC-μCT
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage  S. Otsuka, M.D., T. Aoyama, M.D., Ph.D.,
The layered structure of the articular surface
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
B. Bittersohl, F. R. Miese, H. S. Hosalkar, M. Herten, G. Antoch, R
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover  R.H. Nielsen, A.-C.
Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
UTE bi-component analysis of T2* relaxation in articular cartilage
The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow  A. Shibakawa, M.D., Ph.D., K. Yudoh,
Validation of a 40MHz B-scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model  Mathieu P. Spriet, D.V.M., Christiane.
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
J. Ranstam  Osteoarthritis and Cartilage 
Nonlinear optical microscopy of articular cartilage
On new bone formation in the pre-osteoarthritic joint
E.B. Hunziker, M.D., A. Stähli, D.M.D.  Osteoarthritis and Cartilage 
Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype  K. Gelse, A.B. Ekici,
An experimental study on costal osteochondral graft
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
Degeneration of patellar cartilage in patients with recurrent patellar dislocation following conservative treatment: evaluation with delayed gadolinium-enhanced.
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
Volumetric bone mineral density of the tibia is not increased in subjects with radiographic knee osteoarthritis  M. Abdin-Mohamed, M.B.B.S., M.R.C.P.,
C. E. Berger, M. D. , A. Kröner, M. D. , K. H. Kristen, M. D. , M
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Articular cartilage metabolism in patients with Kashin–Beck Disease: an endemic osteoarthropathy in China  J. Cao, M.D., S. Li, M.D., M.Sc., Z. Shi, M.Sc.,
In vivo imaging of cartilage degeneration using μCT-arthrography
Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis  E. Calvo, M.D., I. Palacios,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
The association between hip bone marrow lesions and bone mineral density: a cross- sectional and longitudinal population-based study  H. Ahedi, D. Aitken,
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
The Effect of Oral PC-III on Osteoarthritis and Bone Marrow Lesions
Effects of helium–neon laser on the mucopolysaccharide induction in experimental osteoarthritic cartilage  Y.-S. Lin, M.Sc, Dr M.-H. Huang, M.D., Ph.D.,
Osteoarthritis year in review 2016: mechanics
Presentation transcript:

Lead accumulation in tidemark of articular cartilage N. Zoeger, Ph.D., P. Roschger, Ph.D., J.G. Hofstaetter, M.D., C. Jokubonis, G. Pepponi, Ph.D., G. Falkenberg, Ph.D., P. Fratzl, Ph.D., A. Berzlanovich, M.D., W. Osterode, M.D., Ph.D., C. Streli, Ph.D., P. Wobrauschek, Ph.D.  Osteoarthritis and Cartilage  Volume 14, Issue 9, Pages 906-913 (September 2006) DOI: 10.1016/j.joca.2006.03.001 Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 (a) BE image of an analyzed 200-μm section of femoral head visualizing the mineralized areas of the sample. (b) Magnified image of the framed box. An SR μ-XRF scan (arrow) performed across (I) non-calcified articular cartilage, (II) the transition zone between non-calcified and calcified articular cartilage, (III) calcified articular cartilage, (IV) subchondral bone and the (V) marrow cavity. (c) Striking Pb and Zn maxima were seen in the transition zone between non-calcified and calcified articular cartilage. Maximum fluorescence intensities were normalized to 10 (absolute values for each element are given in the box). Due to differences in information depths for characteristic X-rays and irregular sample shape, an exact local correlation among intensity profiles and BE image is not possible. Osteoarthritis and Cartilage 2006 14, 906-913DOI: (10.1016/j.joca.2006.03.001) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 (a) BE image of analyzed chondral/subchondral region of the patella. Non-calcified cartilage (I), tidemark (II), calcified cartilage (III), subchondral bone (IV), and cement-lines (V) can be clearly identified. Length of scale bar corresponds to 100μm. (b) Ca, Zn, Sr, Pb signal intensity maps of the corresponding region. (c) Fluorescence intensity profiles along the marked line. Maximum fluorescence intensities were normalized to 10 (absolute values for each element are given in the box). Pb and Zn maxima could be exactly allocated to the tidemark of articular cartilage. Osteoarthritis and Cartilage 2006 14, 906-913DOI: (10.1016/j.joca.2006.03.001) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Pb intensity maps (red) of a chondral/subchondral region of the patella in a sample volume of 200×200×160μm3. The calcified tissue (coherently scattered signal) is visualized as white. (I) Non-calcified articular cartilage, (II) transition zone (tidemark), (III) calcified articular cartilage and (IV) subchondral bone. Osteoarthritis and Cartilage 2006 14, 906-913DOI: (10.1016/j.joca.2006.03.001) Copyright © 2006 OsteoArthritis Research Society International Terms and Conditions