Sample Solution Cryptology Design Fundamentals

Slides:



Advertisements
Similar presentations
Finite Fields Rong-Jaye Chen. p2. Finite fields 1. Irreducible polynomial f(x)  K[x], f(x) has no proper divisors in K[x] Eg. f(x)=1+x+x 2 is irreducible.
Advertisements

BCH Codes Hsin-Lung Wu NTPU.
1 Cryptosystems Based on Discrete Logarithms. 2 Outline [1] Discrete Logarithm Problem [2] Algorithms for Discrete Logarithm –A trivial algorithm –Shanks’
ElGamal Public Key Cryptography CS 303 Alg. Number Theory & Cryptography Jeremy Johnson Taher ElGamal, "A Public-Key Cryptosystem and a Signature Scheme.
Prelude to Public-Key Cryptography Rocky K. C. Chang, February
1 離散對數密碼系統 交通大學資訊工程系 陳榮傑. 2 Outline 離散對數問題 (Discrete Logarithm Problem) 離散對數演算法 (DL Algorithms) –A trivial algorithm –Shanks’ algorithm –Pollard’s algorithm.
Scott CH Huang COM 5336 Cryptography Lecture 6 Public Key Cryptography & RSA Scott CH Huang COM 5336 Cryptography Lecture 6.
Lecture 6.1: Misc. Topics: Number Theory CS 250, Discrete Structures, Fall 2011 Nitesh Saxena.
Module #9 – Number Theory 1/5/ Algorithms, The Integers and Matrices.
Page : 1 bfolieq.drw Technical University of Braunschweig IDA: Institute of Computer and Network Engineering  W. Adi 2011 Lecture-9 Public-Key Cryptography.
Page : 1 bfolieq.drw Technical University of Braunschweig IDA: Institute of Computer and Network Engineering  W. Adi 2011 Lecture-5 Mathematical Background:
Page : 1 bfolieq.drw Technical University of Braunschweig IDA: Institute of Computer and Network Engineering  W. Adi 2011 Lecture-12 Public-Key Cryptography.
Page : 1 Date : Duration : 90 Minutes Maximum marks 70% Vorname ……………………………………….. Nachname ……………………………………….. Matrikel-Nr. ………………………………………..
Public-Key Cryptography ElGamal Public-Key Crypto-System
Cryptographic Protocols Secret sharing, Threshold Security
Mathematical Background : A quick approach to Group and Field Theory
Network Security Netzwerksicherheit Lecture ID: ET-IDA-082 and 111
Mathematical Background: Groups, Rings, Finite Fields (GF)
Mathematical Background for Cryptography: Modular arithmetic and gcd
Mathematical Background: Extension Fields
Network Security Design Fundamentals Lecture-13
Public-Key Cryptography RSA Rivest-Shamir-Adelmann Public-Key System
Prelude to Public-Key Cryptography
RSA Public-Key Secrecy and Signature
DH Public-Key Exchange
Design Problems (Open book)
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Sample Solution Cryptology Design Fundamentals
MATH301- DISCRETE MATHEMATICS Copyright © Nahid Sultana Dr. Nahid Sultana Chapter 4: Number Theory and Cryptography.
Network Security Sample Solution Short questions (Closed book)
Mathematical Background: Prime Numbers
ElGamal Public-Key Systems over GF(p) & GF(2m)
Mathematical Background: Primes and (GF)
Public Key Cryptography
Finite Fields Rong-Jaye Chen.
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Introduction to Algorithms Second Edition by
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Sample Solution Final exam: Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology Design Fundamentals
Cryptology System Design Fundamentals
Cryptographic Protocols Secret Sharing, Threshold Security
Network Security Tutorial-14 Design Fundamentals IPSEC, KERBEROS
Network Security Design Fundamentals Lecture-13
Cryptology Design Fundamentals
Network Security Tutorial-16 Design Fundamentals PGP ET-IDA-082
Network Security Tutorial-16 Design Fundamentals PGP ET-IDA-082
Network Security Tutorial-14 Design Fundamentals IPSEC, KERBEROS
Network Security Tutorial-17 Design Fundamentals E-Commerce ET-IDA-082
Cryptology Design Fundamentals
Mathematical Background: Groups, Rings, Finite Fields (GF)
Public-Key Cryptography Quadratic Residues and „Rabin Lock“
Mathematical Background : A quick approach to Group and Field Theory
Mathematical Background: Extension Finite Fields
Mathematical Background: Primes and (GF)
Presentation transcript:

Sample Solution Cryptology Design Fundamentals Grundlagen des kryptographischen Systementwurfs Lecture ID: ET-IDA-28 Final Examination Closed-book short question part Prof. W. Adi Date : 06.04. 2011 Duration : 20 Minutes , Maximum marks is 30% Sample Solution Vorname ……………………………………….. Nachname ……………………………………….. Matrikel-Nr. ………………………………………..

Marks: ∑ ........... 2

gcd ( a 7 t – a t , a 9 t – a t ) = a t gcd ( a 6 t – 1 , a 8 t – 1 ) Q1: Compute gcd(910,280). (1 P) n1 n2 q r 910 280 3 70 4  gcd ( 910 , 280 ) = …70.. Q2: Compute gcd [ (a7 t - at) , (a9 t - at) ], where a and t are non-zero positive integers and gcd (t,9)=gcd(t,7)=1. (2 P) gcd ( a 7 t – a t , a 9 t – a t ) = a t gcd ( a 6 t – 1 , a 8 t – 1 ) = a t (a gcd ( 6 t, 8 t ) – 1) = a t (a 2t–1) MH: Unterscheidet sich der Font auf dieser Folie absichtlich von den anderen? Page 1/5

Q3: On which claimed unsolvable problems are the securities of the following cryptosystems based? 1. RSA Signature System Integer factoring problem 2. Omura Proof of Identity Protocol Discrete Logarithm Problem 3. Omura-Massey Lock for Shamir’s 3-Pass Protocol over GF(p) Discrete Logarithm Problem over GF(p) 4. Fiat Shamir proof of identity protocol (4 P)

Since ord(3) = 17-1 = 16 as a primitive element Q4: Compute the multiplicative order of 34 in GF(17) assuming that 3 is a primitive element in GF(17). Since ord(3) = 17-1 = 16 as a primitive element Q5: How many elements are there in the group of units Z*m for m =187= 11· 17. Compute the highest possible multiplicative order for a unit in Z*m (*)Compute the multiplicative order of the element 2 modulo 187 (optional question +4p) (3 P) # of elements in the group is (17 . 11) = (17-1) (11-1) = 160 Highest possible order is: (17 . 11) = lcm [(17) , (11)] = lcm [(17) , (11)] = lcm [16, 10] = 16 . 10 / gcd(16,10) = 160/2 = 80 (5 P) MH: Unterscheidet sich der Font auf dieser Folie absichtlich von den anderen? Order divides 80 that is 1, 2, 4, 5, 8, 10, 16, 20, 40, or 80 21 = 2 ≠ 1, 22 = 4 ≠ 1, 24 = 16 ≠ 1, 25 = 32 ≠ 1, 28 = 69 ≠ 1, 210 = 89 ≠ 1, 216 = 86 ≠ 1 220 = 67 ≠ 1, 240 = 1 order of 2 is = 40 Page 2/5

Q6: Reduce the following expressions to the smallest positive integers in the corresponding deployed algebra: 1. R13 ( 12 33 – ( 27 ) 5 · 28 2 ) = R13 ( -1 33 – (1 ) 5 (2)2 ) = R13 (-1 - 4) = R13 (- 5) =8 2. ( 1 – 2x 2 ) ( 2 + 3x2) over GF(5) = 2 + 3 x2 – 4 x2 - 6x4 = 2 – x2–x4 = 2 + 4x2 + 4 x4 (3 P)

and the order of a group’s element? Q7: Which relationship do exist between the number of the group elements and the order of a group’s element? Q8: What is a mathematical „Involution“ function? Is a function which is equal to its inverse function. ( F= F-1 ) (2 P) The order of the group element divides the number of its elements Or the order of each element divides the group’s order (Lagrange Theorem) (2 P) MH: Unterscheidet sich der Font auf dieser Folie absichtlich von den anderen? Page 3/5

+ Shamir Perfect Secret Sharing RAND Z Q9: Sketch Shamir perfect secret sharing scheme for two users (3 P) Shamir Perfect Secret Sharing Shamir RAND Random BSS Z Secret Give User A Common Secret Between A and B + Exchange to generate Common secret RAND + Z Give User B

Compute the possible multiplicative orders for elements in GF(29)? Q10: In GF(29). Compute the possible multiplicative orders for elements in GF(29)? Possible multiplicative orders are the divisors of (29) = 29-1=28= 2 x 2 x7. These are: 1, 2, 4, 7,14,28 Compute the number of primitive elements in GF(29). # of primitive elements (28) = (22.7) = 28 (1- 1/2) . (1- 1/7) = 12 3. Which are the minimum number of tests required to find out weather a given element β in GF(29) is primitive? β1 ≠ 1, β2 ≠ 1, β4 ≠ 1, β7 ≠ 1, β14 ≠ 1 (6 P) MH: Unterscheidet sich der Font auf dieser Folie absichtlich von den anderen?

2-6 = 2t = 2-6 mod 28= 2-6 + 28= 2 22 => order of 2 is 28 Compute the multiplicative order of 2 in GF(29). 21 ≠ 1, 22 ≠ 1, 24 =16≠ 1, 27 =128=12≠ 1, 214 =144=28≠ 1 => order of 2 is 28 Compute the smallest positive integer t for which 2-6 = 2t holds. 2-6 = 2t = 2-6 mod 28= 2-6 + 28= 2 22 => t = 22 Page 4/5

Compute a8 and give the corresponding binary vector for a8 . Q11: GF(26) is generated by the irreducible and primitive polynom P(x)= x6 + x + 1. The element a = 000011 = x + 1 is selected from GF(26). Compute a8 and give the corresponding binary vector for a8 . a = (x +1), a 2 = (x 2 + 1), a 4 = (x 2 + 1) 2 = x 4 + 1, a 8 = (x 4 + 1) 2 = x 8 + 1 = x 3 + x 2 + 1 = 001101 as x 6 + x + 1 = 0  x 6 = x + 1  x 7 = x 2 + x  x 8 = x 3 + x 2 2. Compute the multiplicative order of a (Hint: a= 1+x = x6 ) As P(x) is primitive, the order of x is 26-1=63, as x6=1+x => ord (1+x) = ord( x6) 3. Compute the smallest positive integer t for which a-1 = at holds. The modulus in the exponent for a is the order of a=63 ord (a) = ord (x6) = (ord x) / gcd (ord x , 6) = (2 6 – 1) / gcd (2 6 – 1 , 6) = 63/3 = 21  a -1 mod 21 = a -1+21 = a 20  t = 20 (10 P) MH: Unterscheidet sich der Font auf dieser Folie absichtlich von den anderen?

Annex: Euler Function (m) (m) = m ( 1 - ) ( 1 - ) …… For m = p1 p2 p3 .... pt e1 e2 e3 et (m) = m ( 1 - ) ( 1 - ) …… P1 1 P2 1 Carmicheal´s function (m) :  (2)= 1, (22) = 2, (2e) = 2e-2 for e  3: (pe)= (pe) = (p - 1)pe-1 for p odd prim. for m = p1e1 p2e2 p3e3 ... pnen (m) = lcm [ (p1e1 ), (p2e2 ), … (pnen ) ] page 5/5