Determinants of 2 x 2 and 3 x 3 Matrices

Slides:



Advertisements
Similar presentations
Problem # Problem #
Advertisements

Identity and Inverse Matrices
Triangles, Quadrilaterals, Nets, Prisms & Composite Polygons
Determinants of 2 x 2 and 3 x 3 Matrices By: Jeffrey Bivin Lake Zurich High School
Matrices & Systems of Linear Equations
Matrices. Special Matrices Matrix Addition and Subtraction Example.
Solving systems using matrices
Interior angles of polygons This is just one of the six interior angles of this polygon.
Chapter 1 Section 1.2 Echelon Form and Gauss-Jordan Elimination.
How to find the inverse of a matrix
1.1.2 INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS Chapter 1: Systems of Linear Equations and Matrices SWBAT: Redefine algebraic operations as Elementary.
Matrix Solutions to Linear Systems. 1. Write the augmented matrix for each system of linear equations.
Chapter 4 Matrices Review Round 1: Multiple Choice 1 point each.
4.6 Cramer’s Rule Using Determinants to solve systems of equations.
Algebra 3: Section 5.5 Objectives of this Section Find the Sum and Difference of Two Matrices Find Scalar Multiples of a Matrix Find the Product of Two.
Advanced Trig Exam Review Day Three: Matrices. Solving Systems of Equations.
4.3 Matrices and Determinants Algebra 2. Learning Targets: Evaluate the determinant of a 3 x 3 matrix, and Find the area of a triangle given the coordinates.
Class 7: Answers 1 (C) Which of the following matrices below is in reduced row echelon form? A B C D. None of them.
10.3 Systems of Linear Equations: Matrices. A matrix is defined as a rectangular array of numbers, Column 1Column 2 Column jColumn n Row 1 Row 2 Row 3.
Cramer’s Rule for Matrices You can use properties of matrix determinants for a variety of applications. Today: – Solving 3 variable systems of equations.
EXAMPLE 1 Represent figures using matrices Write a matrix to represent the point or polygon. a. Point A b. Quadrilateral ABCD.
EXAMPLE 2 Add and subtract matrices 5 –3 6 – –4 + a. –3 + 2
KNOW WHICH LINE MATTERS WHEN FINDING AREA & VOLUME! IDENTIFYING HEIGHT & BASE.
8.2 Operations With Matrices
= 5 = 2 = 4 = 3 How could I make 13 from these shapes? How could I make 19 from these shapes? STARTER.
Warm up Solve this system using inverses: –1. x + y –z = -2 – 2x –y + z = 5 – -x + 2y + 2z = 1.
What is Matrix Multiplication? Matrix multiplication is the process of multiplying two matrices together to get another matrix. It differs from scalar.
MATRIX A set of numbers arranged in rows and columns enclosed in round or square brackets is called a matrix. The order of a matrix gives the number of.
Honors Geometry.  We learned how to set up a polygon / vertex matrix  We learned how to add matrices  We learned how to multiply matrices.
Worksheet Answers Matrix worksheet And Matrices Review.
3.6 Multiplying Matrices Homework 3-17odd and odd.
EXAMPLE 3 Use matrices to rotate a figure SOLUTION STEP 1Write the polygon matrix: Trapezoid EFGH has vertices E(–3, 2), F(–3, 4), G(1, 4), and H(2, 2).
Notes Over 4.3 Evaluate Determinants of 2 x 2 Matrices
Chapter 1 Section 1.6 Algebraic Properties of Matrix Operations.
= the matrix for T relative to the standard basis is a basis for R 2. B is the matrix for T relative to To find B, complete:
Slide Copyright © 2009 Pearson Education, Inc. 7.4 Solving Systems of Equations by Using Matrices.
Notes Over 4.2 Finding the Product of Two Matrices Find the product. If it is not defined, state the reason. To multiply matrices, the number of columns.
Chapter 5: Matrices and Determinants Section 5.5: Augmented Matrix Solutions.
Finding the Area of a Triangle. Find the area of the Triangle Use a Determinant.
$200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200.
Triangles, Quadrilaterals, Nets, Prisms & Composite Polygons
Systems of Linear Equations: Matrices
Alg 2 Ch 6 Matrices.
13.4 Product of Two Matrices
12-1 Organizing Data Using Matrices
1.5 Matricies.
Fractions
Area of Quadrilaterals
Chapter 8: Lesson 8.1 Matrices & Systems of Equations
Fundamentals of Engineering Analysis
Using Determinants to solve systems of equations
Multiplying Matrices.
Polygon Pizzas By: Emma Exton.
Picture This! Reducing Fractions

Unit 3: Matrices
( ) ( ) ( ) ( ) Matrices Order of matrices
EXAMPLE 2 Add and subtract matrices 5 –3 6 – –4 + a. –3 + 2
Picture This! Reducing Fractions
9-1: Reflections.
REDUCING MATRICES.
Math 9 Honors Shoe Lace method:
Divide the paper into three sections.
3.6 Multiply Matrices.
Matrices and Determinants
Matrix A matrix is a rectangular arrangement of numbers in rows and columns Each number in a matrix is called an Element. The dimensions of a matrix are.
The Identity and Inverse Matrices
Matrix Multiplication Sec. 4.2
Building pattern  Complete the following tables and write the rule 
Divide 9 × by 3 ×
Presentation transcript:

Determinants of 2 x 2 and 3 x 3 Matrices

Determinant of a 2 x 2 Matrix b c d d b a c -

Example 1

Determinant of a 2 x 2 Matrix 3 5 4 6 3 6 4 5 - -2 =

Example 2

Determinant of a 2 x 2 Matrix -4 3 5 2 -4 2 5 3 - -23 =

Example 3

Determinant of a 2 x 2 Matrix 8 4 6 5 8 5 6 4 - 16 =

Example 4

Determinant of a 3 x 3 Matrix 1 3 4 2 5 6 7

Determinant of a 3 x 3 Matrix 1 3 4 2 5 6 7 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix 1 3 4 2 5 6 7 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix 1 3 4 2 5 6 7 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix 1 3 4 2 5 6 7 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix 1 3 4 2 5 6 7

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - - -

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - - -

Determinant of a 3 x 3 Matrix 1 3 4 2 5 6 7 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix 1 3 4 2 5 6 7 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + 1 3 4 2 5 6 7 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + 1 3 4 2 5 6 7 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - - 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - - 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - - - 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - - - 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - - - 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - - - 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix + + 1 3 4 2 5 6 7 - - - 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3 7 + 45 + 48 - 12 - 30 - 42 = 16

Example 5

Determinant of a 3 x 3 Matrix 2 1 6 4 3 7 5 9 8 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix 2 1 6 4 3 7 5 9 8 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix 2 1 6 4 3 7 5 9 8 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix 2 1 6 4 3 7 5 9 8 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix 2 1 6 4 3 7 5 9 8 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix 2 1 6 4 3 7 5 9 8 Augment the determinant with the first two columns

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - - -

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - - -

Determinant of a 3 x 3 Matrix 2 1 6 4 3 7 5 9 8 1•1•7 + 3•5•3 + 4•2•6 - 3•1•4 - 6•5•1 - 7•2•3

Determinant of a 3 x 3 Matrix 2 1 6 4 3 7 5 9 8 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + 2 1 6 4 3 7 5 9 8 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + 2 1 6 4 3 7 5 9 8 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - - 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - - 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - - - 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - - - 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - - - 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - - - 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1

Determinant of a 3 x 3 Matrix + + 2 1 6 4 3 7 5 9 8 - - - 2•3•8 + 1•7•5 + 6•4•9 - 5•3•6 - 9•7•2 - 8•4•1 48 + 35 + 216 - 90 - 126 - 32 = 51

Find the area of the Triangle (5, 9) Use a Determinant (9, 5) 1 2 5 9 (1, 2)

Determinant of a 3 x 3 Matrix + + 1 2 5 9 - - - (1•9•1 + 2•1•9 + 1•5•5 - 9•9•1 - 5•1•1 - 1•5•2) (9 + 18 + 25 - 81 - 5 - 10) 22

Find the area of the Quadrilateral (3, 9) (9, 5) (-3, 2) Divide into two triangles (1, -5)

Find the area of the Quadrilateral (3, 9) The top triangle (9, 5) (-3, 2) -3 2 1 3 9 5 (1, -5)

Find the area of the Quadrilateral (3, 9) The bottom triangle (9, 5) (-3, 2) 9 5 1 -5 -3 2 (1, -5)

Find the area of the Quadrilateral (3, 9) (9, 5) (-3, 2) Purple Area = Green Area = (1, -5) Total Area =

The area of the triangle is 11. Find the value(s) of k. Use a Determinant (1, 3) k+1 1 k 5 3 (k+1, 1)

The area of the triangle is 11. Find the value(s) of k. 5 3

The area of the triangle is 11. Find the value(s) of k. 5 3

“Shoe Lace” Method

Find the area of the Triangle (5, 9) 1 2 5 9 (9, 5) (1, 2)

Find the area of the Quadrilateral (3, 9) -3 2 3 9 5 1 -5 (9, 5) (-3, 2) (1, -5)