7-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz

Slides:



Advertisements
Similar presentations
8-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Advertisements

8-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz.
8-4 Factoring ax 2 + bx + c Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Warm-ups Find each product. 1. (x – 2)(2x + 7) 2. (3y + 4)(2y + 9) 3. (3n – 5)(n – 7) Factor each trinomial. 4. x 2 +4x – z z + 36.
7-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
7-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Objective Factor quadratic trinomials of the form x2 + bx + c.
Holt Algebra Factoring x 2 + bx + c Warm Up 1. Which pair of factors of 8 has a sum of 9? 2. Which pair of factors of 30 has a sum of –17? Multiply.
Warm Up Find each product. 1. (x – 2)(2x + 7) 2. (3y + 4)(2y + 9)
7-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
5 Minute Warm-Up Directions: Simplify each problem. Write the
7-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Objective Solve quadratic equations by completing the square.
Factoring
Instructions Work through the notes, making sure to look at the online textbook or yesterday’s notes if you have any questions. Once done with the notes.
8-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
8-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Objective 1.Factor quadratic trinomials of the form x2 + bx + c.
Factoring Trinomials with a > 1 Factor trinomials when the coefficient of x 2 is a number greater than 1. ax 2 + bx + c.
Holt Algebra Factoring x 2 + bx + c Factor quadratic trinomials of the form x 2 + bx + c. Objective.
Preview Warm Up California Standards Lesson Presentation.
Chapter 7 Section 3 and 4 Factoring. Objectives  Factor quadratic trinomials of the form x 2 + bx + c. Factor quadratic trinomials of the form ax 2 +
Chapter 5.2 Solving Quadratic Equations by Factoring.
Holt McDougal Algebra 1 Factoring x 2 + bx + c Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal.
Holt McDougal Algebra 1 Factoring x 2 + bx + c Factor quadratic trinomials of the form x 2 + bx + c. Objective.
Holt McDougal Algebra Factoring x 2 + bx + c Factor quadratic trinomials of the form x 2 + bx + c. Objective multiply two binomials using the Distributive.
7-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Multiply (x+3)(2x-7) Factor 3. 42x – 7
6-3 Polynomials Warm Up Lesson Presentation Lesson Quiz
Solution Think of FOIL in reverse. (x + )(x + )
7-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
7-3 Factoring x2 + bx + c Warm Up Lesson Presentation Cornell Notes
Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
What You Will Learn Solving Quadratic Equations by Using Factoring
7-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Lesson Objective: I will be able to …
Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Lesson Objective: I will be able to …
8-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Warm Up Find each product. 1. (x – 2)(2x + 7) 2. (3y + 4)(2y + 9)
8-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
7-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
8.3 Factoring Equations of the Form: x2 + bx + c
8-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Objective Factor quadratic trinomials of the form ax2 + bx + c.
Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
7-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
7-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Example 1A: Factoring Trinomials by Guess and Check
Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
8-8 Completing the Square Warm Up Lesson Presentation Lesson Quiz
Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
8-10 Nonlinear Systems Warm Up Lesson Presentation Lesson Quiz
Factoring Trinomials Day #1
Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Factoring trinomials in form ax2 + bx + c
Factoring Trinomials with Last Term POSITIVE Guess & Check Method
7-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
7-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
8-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
7-3 Factoring x2 + bx + c Warm Up Lesson Presentation Lesson Quiz
7-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz
There is a pattern for factoring trinomials of this form, when c
Warm Up Find each product. 1. (x – 2)(2x + 7) 2. (3y + 4)(2y + 9)
Factoring Trinomials of the Type x2 + bx + c
Presentation transcript:

7-4 Factoring ax2 + bx + c Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 1 Holt Algebra 1

Warm Up Find each product. 1. (x – 2)(2x + 7) 2. (3y + 4)(2y + 9) 3. (3n – 5)(n – 7) Find each trinomial. 4. x2 +4x – 32 5. z2 + 15z + 36 6. h2 – 17h + 72 2x2 + 3x – 14 6y2 + 35y + 36 3n2 – 26n + 35 (x – 4)(x + 8) (z + 3)(z + 12) (h – 8)(h – 9)

Objective Factor quadratic trinomials of the form ax2 + bx + c.

In the previous lesson you factored trinomials of the form x2 + bx + c In the previous lesson you factored trinomials of the form x2 + bx + c. Now you will factor trinomials of the form ax2 + bx + c, where a ≠ 0.

When you multiply (3x + 2)(2x + 5), the coefficient of the x2-term is the product of the coefficients of the x-terms. Also, the constant term in the trinomial is the product of the constants in the binomials. (3x + 2)(2x + 5) = 6x2 + 19x + 10

To factor a trinomial like ax2 + bx + c into its binomial factors, write two sets of parentheses ( x + )( x + ). Write two numbers that are factors of a next to the x’s and two numbers that are factors of c in the other blanks. Multiply the binomials to see if you are correct. (3x + 2)(2x + 5) = 6x2 + 19x + 10

Example 1: Factoring ax2 + bx + c by Guess and Check Factor 6x2 + 11x + 4 by guess and check. ( + )( + ) Write two sets of parentheses. ( x + )( x + ) The first term is 6x2, so at least one variable term has a coefficient other than 1. The coefficient of the x2 term is 6. The constant term in the trinomial is 4. (2x + 4)(3x + 1) = 6x2 + 14x + 4  (1x + 4)(6x + 1) = 6x2 + 25x + 4  Try factors of 6 for the coefficients and factors of 4 for the constant terms. (1x + 2)(6x + 2) = 6x2 + 14x + 4  (1x + 1)(6x + 4) = 6x2 + 10x + 4  (3x + 4)(2x + 1) = 6x2 + 11x + 4 

Factor 6x2 + 11x + 4 by guess and check. Example 1 Continued Factor 6x2 + 11x + 4 by guess and check. ( + )( + ) Write two sets of parentheses. ( x + )( x + ) The first term is 6x2, so at least one variable term has a coefficient other than 1. The factors of 6x2 + 11x + 4 are (3x + 4) and (2x + 1). 6x2 + 11x + 4 = (3x + 4)(2x + 1)

    Check It Out! Example 1a Factor each trinomial by guess and check. 6x2 + 11x + 3 ( + )( + ) Write two sets of parentheses. ( x + )( x + ) The first term is 6x2, so at least one variable term has a coefficient other than 1. The coefficient of the x2 term is 6. The constant term in the trinomial is 3. (2x + 1)(3x + 3) = 6x2 + 9x + 3  Try factors of 6 for the coefficients and factors of 3 for the constant terms. (1x + 3)(6x + 1) = 6x2 + 19x + 3  (1x + 1)(6x + 3) = 6x2 + 9x + 3  (3x + 1)(2x + 3) = 6x2 + 11x + 3 

Check It Out! Example 1a Continued Factor each trinomial by guess and check. 6x2 + 11x + 3 ( + )( + ) Write two sets of parentheses. ( x + )( x + ) The first term is 6x2, so at least one variable term has a coefficient other than 1. The factors of 6x2 + 11x + 3 are (3x + 1)(2x + 3). 6x2 + 11x + 3 = (3x + 1)(2x +3)

    Check It Out! Example 1b Factor each trinomial by guess and check. 3x2 – 2x – 8 ( + )( + ) Write two sets of parentheses. The first term is 3x2, so at least one variable term has a coefficient other than 1. ( x + )( x + ) The coefficient of the x2 term is 3. The constant term in the trinomial is –8. (1x – 1)(3x + 8) = 3x2 + 5x – 8  Try factors of 3 for the coefficients and factors of 8 for the constant terms.  (1x – 4)(3x + 2) = 3x2 – 10x – 8 (1x – 8)(3x + 1) = 3x2 – 23x – 8  (1x – 2)(3x + 4) = 3x2 – 2x – 8 

Check It Out! Example 1b Continued Factor each trinomial by guess and check. 3x2 – 2x – 8 ( + )( + ) Write two sets of parentheses. ( x + )( x + ) The first term is 3x2, so at least one variable term has a coefficient other than 1. The factors of 3x2 – 2x – 8 are (x – 2)(3x + 4). 3x2 – 2x – 8 = (x – 2)(3x + 4)

So, to factor a2 + bx + c, check the factors of a and the factors of c in the binomials. The sum of the products of the outer and inner terms should be b. Product = a Product = c Sum of outer and inner products = b ( X + )( x + ) = ax2 + bx + c

Since you need to check all the factors of a and the factors of c, it may be helpful to make a table. Then check the products of the outer and inner terms to see if the sum is b. You can multiply the binomials to check your answer. Product = a Product = c Sum of outer and inner products = b ( X + )( x + ) = ax2 + bx + c

Example 2A: Factoring ax2 + bx + c When c is Positive Factor each trinomial. Check your answer. 2x2 + 17x + 21 a = 2 and c = 21, Outer + Inner = 17. ( x + )( x + ) Factors of 2 Factors of 21 Outer + Inner 1 and 2 1 and 21 1(21) + 2(1) = 23 21 and 1 1(1) + 2(21) = 43 3 and 7 1(7) + 2(3) = 13 7 and 3 1(3) + 2(7) = 17   (x + 7)(2x + 3) Use the Foil method. Check (x + 7)(2x + 3) = 2x2 + 3x + 14x + 21 = 2x2 + 17x + 21 

When b is negative and c is positive, the factors of c are both negative. Remember!

Example 2B: Factoring ax2 + bx + c When c is Positive Factor each trinomial. Check your answer. 3x2 – 16x + 16 a = 3 and c = 16, Outer + Inner = –16. ( x + )( x + ) Factors of 3 Factors of 16 Outer + Inner 1 and 3 –1 and –16 1(–16) + 3(–1) = –19 – 2 and – 8 1( – 8) + 3(–2) = –14 – 4 and – 4 1( – 4) + 3(– 4)= –16   (x – 4)(3x – 4) Use the Foil method. Check (x – 4)(3x – 4) = 3x2 – 4x – 12x + 16 = 3x2 – 16x + 16 

   Check It Out! Example 2a Factor each trinomial. Check your answer. 6x2 + 17x + 5 a = 6 and c = 5, Outer + Inner = 17. ( x + )( x + ) Factors of 6 Factors of 5 Outer + Inner 1 and 6 1 and 5 1(5) + 6(1) = 11 2 and 3 2(5) + 3(1) = 13 3 and 2 3(5) + 2(1) = 17   (3x + 1)(2x + 5) Use the Foil method. Check (3x + 1)(2x + 5) = 6x2 + 15x + 2x + 5 = 6x2 + 17x + 5 

   Check It Out! Example 2b Factor each trinomial. Check your answer. 9x2 – 15x + 4 a = 9 and c = 4, Outer + Inner = –15. ( x + )( x + ) Factors of 9 Factors of 4 Outer + Inner 3 and 3 –1 and – 4 3(–4) + 3(–1) = –15 – 2 and – 2 3(–2) + 3(–2) = –12 – 4 and – 1 3(–1) + 3(– 4)= –15   (3x – 4)(3x – 1) Use the Foil method. Check (3x – 4)(3x – 1) = 9x2 – 3x – 12x + 4 = 9x2 – 15x + 4 

   Check It Out! Example 2c Factor each trinomial. Check your answer. 3x2 + 13x + 12 a = 3 and c = 12, Outer + Inner = 13. ( x + )( x + ) Factors of 3 Factors of 12 Outer + Inner 1 and 3 1 and 12 1(12) + 3(1) = 15 2 and 6 1(6) + 3(2) = 12 3 and 4 1(4) + 3(3) = 13   (x + 3)(3x + 4) Use the Foil method. Check (x + 3)(3x + 4) = 3x2 + 4x + 9x + 12 = 3x2 + 13x + 12 

When c is negative, one factor of c will be positive and the other factor will be negative. Only some of the factors are shown in the examples, but you may need to check all of the possibilities.

Example 3A: Factoring ax2 + bx + c When c is Negative Factor each trinomial. Check your answer. 3n2 + 11n – 4 a = 3 and c = – 4, Outer + Inner = 11 . ( n + )( n+ ) Factors of 3 Factors of –4 Outer + Inner 1 and 3 –1 and 4 1(4) + 3(–1) = 1 –2 and 2 1(2) + 3(–2) = – 4 –4 and 1 1(1) + 3(–4) = –11  4 and –1 1(–1) + 3(4) = 11  (n + 4)(3n – 1) Use the Foil method. Check (n + 4)(3n – 1) = 3n2 – n + 12n – 4 = 3n2 + 11n – 4 

Example 3B: Factoring ax2 + bx + c When c is Negative Factor each trinomial. Check your answer. 2x2 + 9x – 18 a = 2 and c = –18, Outer + Inner = 9. ( x + )( x+ ) Factors of 2 Factors of – 18 Outer + Inner 1 and 2 18 and –1 1(– 1) + 2(18) = 35 9 and –2 1(– 2) + 2(9) = 16 6 and –3 1(– 3) + 2(6) = 9   (x + 6)(2x – 3) Use the Foil method. Check (x + 6)(2x – 3) = 2x2 – 3x + 12x – 18 = 2x2 + 9x – 18 

Example 3C: Factoring ax2 + bx + c When c is Negative Factor each trinomial. Check your answer. 4x2 – 15x – 4 a = 4 and c = –4, Outer + Inner = –15. ( x + )( x+ ) Factors of 4 Factors of – 4 Outer + Inner 1 and 4 –1 and 4 1(4) + 4(–1) = 0  1 and 4 –2 and 2 1(2) + 4(–2) = –6  1 and 4 –4 and 1 1(1) + 4(–4) = –15  (x – 4)(4x + 1) Use the Foil method. Check (x – 4)(4x + 1) = 4x2 + x – 16x – 4 = 4x2 – 15x – 4 

  Check It Out! Example 3a Factor each trinomial. Check your answer. 6x2 + 7x – 3 a = 6 and c = –3, Outer + Inner = 7. ( x + )( x+ ) Factors of 6 Factors of – 3 Outer + Inner 6 and 1 1 and –3 6(–3) + 1(1) = –17 3 and –1 6(–1) + 1(3) = – 3   3 and 2 3(–3) + 2(1) = – 7 3(–1) + 2(3) = 3 2 and 3 2(–3) + 3(1) = – 3 2(–1) + 3(3) = 7 (3x – 1)(2x + 3) Use the Foil method. Check (3x – 1)(2x + 3) = 6x2 + 9x – 2x – 3 = 6x2 + 7x – 3

  Check It Out! Example 3b Factor each trinomial. Check your answer. 4n2 – n – 3 a = 4 and c = –3, Outer + Inner = –1. ( n + )( n+ ) Factors of 4 Factors of –3 Outer + Inner 1 and 4 1 and –3 1(–3) + 4(1) = 1 –1 and 3 1(3) – 4(1) = – 1   (4n + 3)(n – 1) Use the Foil method. Check (4n + 3)(n – 1) = 4n2 – 4n + 3n – 3 = 4n2 – n – 3

When the leading coefficient is negative, factor out –1 from each term before using other factoring methods.

When you factor out –1 in an early step, you must carry it through the rest of the steps. Caution

Example 4A: Factoring ax2 + bx + c When a is Negative Factor –2x2 – 5x – 3. –1(2x2 + 5x + 3) Factor out –1. a = 2 and c = 3; Outer + Inner = 5 –1( x + )( x+ ) Factors of 2 Factors of 3 Outer + Inner 1 and 2 3 and 1 1(1) + 3(2) = 7   1 and 3 1(3) + 1(2) = 5 (x + 1)(2x + 3) –1(x + 1)(2x + 3)

  Check It Out! Example 4a Factor each trinomial. –6x2 – 17x – 12 Factor out –1. –1(6x2 + 17x + 12) a = 6 and c = 12; Outer + Inner = 17 –1( x + )( x+ ) Factors of 6 Factors of 12 Outer + Inner 2 and 3 4 and 3 2(3) + 3(4) = 18   3 and 4 2(4) + 3(3) = 17 (2x + 3)(3x + 4) –1(2x + 3)(3x + 4)

  Check It Out! Example 4b Factor each trinomial. –3x2 – 17x – 10 Factor out –1. –1(3x2 + 17x + 10) a = 3 and c = 10; Outer + Inner = 17) –1( x + )( x+ ) Factors of 3 Factors of 10 Outer + Inner 1 and 3 2 and 5 1(5) + 3(2) = 11   5 and 2 1(2) + 3(5) = 17 (3x + 2)(x + 5) –1(3x + 2)(x + 5)

Lesson Quiz Factor each trinomial. Check your answer. 1. 5x2 + 17x + 6 2. 2x2 + 5x – 12 3. 6x2 – 23x + 7 4. –4x2 + 11x + 20 5. –2x2 + 7x – 3 6. 8x2 + 27x + 9 (5x + 2)(x + 3) (2x– 3)(x + 4) (3x – 1)(2x – 7) (–x + 4)(4x + 5) (–2x + 1)(x – 3) (8x + 3)(x + 3)