First Order Probabilistic Inference, by David Poole (2003)

Slides:



Advertisements
Similar presentations
1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir.
Advertisements

1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
Cs774 (Prasad)L7Negation1 Negation by Failure
Discussion #17 1/15 Discussion #17 Derivations. Discussion #17 2/15 Topics Derivations  proofs in predicate calculus Inference Rules with Quantifiers.
Lifted First-Order Probabilistic Inference Rodrigo de Salvo Braz, Eyal Amir and Dan Roth This research is supported by ARDA’s AQUAINT Program, by NSF grant.
Plan Recognition with Multi- Entity Bayesian Networks Kathryn Blackmond Laskey Department of Systems Engineering and Operations Research George Mason University.
CPSC 322, Lecture 26Slide 1 Reasoning Under Uncertainty: Belief Networks Computer Science cpsc322, Lecture 27 (Textbook Chpt 6.3) March, 16, 2009.
Programming Language Semantics Inductive Definitions Mooly SagivEran Yahav Schrirber 317Open space
Bayesian Networks. Motivation The conditional independence assumption made by naïve Bayes classifiers may seem to rigid, especially for classification.
Fig. 3-1, p. 67. Fig. 3-2, p. 67 Fig. 3-3, p. 68.
CSE (c) S. Tanimoto, 2007 Unification 1 Unification Predicate calculus rules are sometimes so general that we need to create specializations of.
. Approximate Inference Slides by Nir Friedman. When can we hope to approximate? Two situations: u Highly stochastic distributions “Far” evidence is discarded.
CPSC 422, Lecture 18Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 18 Feb, 25, 2015 Slide Sources Raymond J. Mooney University of.
P Fig. 6-1, p. 193 Fig. 6-2, p. 193 Fig. 6-3, p. 195.
. PGM 2002/3 – Tirgul6 Approximate Inference: Sampling.
Introduction to Logic for Artificial Intelligence Lecture 2 Erik Sandewall 2010.
1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir.
Bayesian networks. Motivation We saw that the full joint probability can be used to answer any question about the domain, but can become intractable as.
Generalizing Variable Elimination in Bayesian Networks 서울 시립대학원 전자 전기 컴퓨터 공학과 G 박민규.
1. Given vectors a, b, and c: Graph: a – b + 2c and 3c – 2a + b 2. Prove that these following vectors a = 3i – 2j + k, b = i – 3j +5k, and c = 2i +j –
Lifted First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International joint work with Eyal Amir and Dan Roth.
1 Lifted First-Order Probabilistic Inference Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir and Dan Roth.
Natural Deduction for Predicate Logic Bound Variable: A variable within the scope of a quantifier. – (x) Px – (  y) (Zy · Uy) – (z) (Mz  ~Nz) Free Variable:
Discrete Mathematics CS 2610 August 22, Agenda Last class Propositional logic Logical equivalences This week Predicate logic & rules of inference.
Cs774 (Prasad)L6Backtracking1 Controlling Backtracking : Cuts
CSE (c) S. Tanimoto, 2008 Predicate Calculus II 1 Predicate Calculus 2 Outline: Unification: definitions, algorithm Formal interpretations and satisfiability.
1 Section 8.3 Higher-Order Logic A logic is higher-order if it allows predicate names or function names to be quantified or to be arguments of a predicate.
CPSC 322, Lecture 26Slide 1 Reasoning Under Uncertainty: Belief Networks Computer Science cpsc322, Lecture 27 (Textbook Chpt 6.3) Nov, 13, 2013.
Examples of Predicate Logic Proofs. Example 1 Argument: ( ∀ x ∈ D, P(x)) ˅ ( ∃ y ∈ D, Q(y)) ∃ z ∈ D, ~P(z) ∃ w ∈ D, Q(w)
1 Hojjat Ghaderi, University of Toronto, Fall 2006 CSC384: Intro to Artificial Intelligence Knowledge Representation III ● Required Readings: 9.1, 9.2,
Computer Science cpsc322, Lecture 25
Another look at Bayesian inference
Reasoning Under Uncertainty: Belief Networks
Bayesian networks Chapter 14 Section 1 – 2.
Chapter 3 The Logic of Quantified Statements
The function of knowledge representation scheme is
Read R&N Ch Next lecture: Read R&N
Approximate Inference
Introduction to Artificial Intelligence
Horn Clauses and Unification
CS 4/527: Artificial Intelligence
Introduction to Artificial Intelligence
Probabilistic Data Management
CS 1502 Formal Methods in Computer Science
Read R&N Ch Next lecture: Read R&N
Knowledge and Uncertainty
Lifted First-Order Probabilistic Inference [de Salvo Braz, Amir, and Roth, 2005] Daniel Lowd 5/11/2005.
Introduction to Artificial Intelligence
Anytime Lifted Belief Propagation
Advanced Artificial Intelligence
Representing Boolean functions
Reasoning Under Uncertainty: Bnet Inference
Consistent Query Answering: a personal perspective
Horn Clauses and Unification
Horn Clauses and Unification
CSE (c) S. Tanimoto, 2004 Unification
CSE S. Tanimoto Unification
Horn Clauses and Unification
CSE (c) S. Tanimoto, 2002 Unification
Inference III: Approximate Inference
Brief Introduction to Computational Logic
Horn Clauses and Unification
Read R&N Ch Next lecture: Read R&N
CPSC 121: Models of Computation
Probabilistic Reasoning
Read R&N Ch Next lecture: Read R&N
Controlling Backtracking : Cuts
Chapter 14 February 26, 2004.
Logical Inference 4 wrap up
Presentation transcript:

First Order Probabilistic Inference, by David Poole (2003) Rodrigo de Salvo Braz

P(x1,x2,x3,x4) = P(x3|x1,x2)P(x1)P(x2|x4)P(x4) Bayesian Networks x1 x2 x4 x3 P(x1,x2,x3,x4) = P(x3|x1,x2)P(x1)P(x2|x4)P(x4)

P(x1,x2,x3,x4)  1(x1)2(x1,x2, x3)3(x2,x4) 4(x4) Factor Networks 3 x1 x2 x4 1 4 2 x3 P(x1,x2,x3,x4)  1(x1)2(x1,x2, x3)3(x2,x4) 4(x4)

Variable Elimination (VE) in Factor Networks z1 z1 1 5 4 2 z4 z2 z4 y z2 3 z3 z3 ...y1(z1,y)2(z2,y)3(z3,y)4(z4,y)... ...1(z1,y)2(z2,y)3(z3,y)4(z4,y)... ...5 (z1,z2,z3,z4)...

VE in Factor Networks 3 x1 x2 x4 1 4 2 x3 Query P(x2) = ?

VE in Factor Networks 5 x1 x2 1 2 x3 Query P(x2) = ?

VE in Factor Networks 5 x2 6 x3 Query P(x2) = ?

VE in Factor Networks 5 x2 7 P(x2)  5(x2)7 (x2)

First Order Probabilistic Inference If a person P has been in a country C and C speaks a language L, then P speaks L with probability 0.4 else P speaks L with probability 0.01.

First Order Probabilistic Inference If a person P has been in a country C and C speaks a language L, then P speaks L with probability 0.4 else P speaks L with probability 0.01. h_b cn_spks spks  T 0.4 F 0.6 0.01 0.5 h_b (P,C) cn_spks(C,L)  spks(P,L)

First Order Probabilistic Inference domain: nutland, crazynia, john, mary, french P(john has been to nutland | john speaks french, mary has been to nutland, mary speaks french) = ?

First Order Probabilistic Inference domain: nutland, crazynia, john, mary, french P(john has been to nutland | john speaks french, mary has been to nutland, mary speaks french) = ? h_b(john,nutland) cn_spks(nutland,french) h_b(mary,nutland)   spks(john,french) spks(mary,french)   h_b(john,france) cn_spks(crazynia,french) h_b(mary,france)

First Order Probabilistic Inference Full grounding unfeasible, size increases fast.

First Order Probabilistic Inference Full grounding unfeasible, size increases fast. We may know that there are, e.g., 200 countries, 300 languages, without knowing any difference between them. ... ... h_b(john,c1) spks(john,l1)  cn_spks(c1,l1) h_b(john,c100) cn_spks(c100,l1)  spks(john,l1) ... ... ... ... h_b(john,c1) spks(john,l200)  cn_spks(c1,l200) h_b(john,c100) cn_spks(c100,l200)  spks(john,l200)

First Order Probabilistic Inference p(X) Domain U = {a,b,...,z,a1,...} p(a), p(b), ..., q(a,b), ... are random variables. X, Y are logical variables. Represents infinite factors:  q(X,Y) p(a) p(b) p(z) p(a) p(b) p(z) p(a) p(b) p(z)     p(a)  p(b)  p(z) ... ...  p(a)  p(b)  p(z) q(a,a) q(b,a) q(z,a) . . . . . . . . . q(a,b) q(b,b) q(z,b)    q(a,c) q(b,c) q(z,c)    q(a,z) . . . q(b,z) . . . q(z,z) . . . q(a,a1) q(b,a1) q(z,a1)

Implicit representation Keep it implicit: the parameterized factor (parfactor)  p(a) q(a,a1) q(a,z) q(a,c) q(a,b) q(a,a) . . . ... p(b) q(b,a1) q(b,z) q(b,c) q(b,b) q(b,a) p(z) q(z,a1) q(z,z) q(z,c) q(z,b) q(z,a) p(X)   q(X,Y) {X  U, Y  U}

Implicit representation With Constraints p(a) p(X) p(a) p(a) p(a)       p(a)  p(a) q(a,a) q(a,b) . . .  q(a,Y) q(X,Y) q(a,c)  q(a,z) . . . q(a,a1) {Y  U} {X = a, Y  U}

Variable Elimination (VE) Example t(W) 1 {W  b} p(W) 3 2 q(X,Y) p(Y) p(V) s(V) {} {V  c} We want to eliminate variables with predicate p

VE Example – Grounding ... ... ... ... ... ... {W  b} t(a) t(b) t(c) t(d) ... {W  b} 1 1 1 1 ... p(a) p(b) p(c) p(d) 3 q(a,a) 2 p(a) 3 p(a) s(a) q(b,a) 2 What are the common variables on p? p(b) s(b) ... 2 3 q(a,b) p(c) s(c) p(b) 2 3 s(d) q(b,b) p(d) ... ... ... {V  c} {}

VE Example – Grounding ... ... ... ... ... ... {W  b} t(a) t(b) t(c) t(d) ... {W  b} 1 1 1 1 ... p(a) p(b) p(c) p(d) 3 q(a,a) 2 p(a) 3 p(a) s(a) q(b,a) 2 Common variables: p(Y’){Y’b,Y’c} p(b) s(b) ... 2 3 q(a,b) p(c) s(c) p(b) 2 3 s(d) q(b,b) p(d) ... ... ... {V  c} {}

VE Example – Common variables t(W) 1 {W  b} p(W) 3 2 q(X,Y) p(Y) p(V) s(V) {} {V  c} Unification(p(Y), p(W){W  b}, p(V){V  c}) = p(Y’){Y=V=W=Y’,Y’  b, Y’  c}

VE Example – Unified parfactors only t(Y’) 1 {Y’b,Y’c} p(Y’) 3 2 q(X,Y’) p(Y’) p(Y’) s(Y’) {Y’b,Y’c} {Y’b,Y’c} What about the remaining bindings?

VE Example – Splitting parfactors Unification Residual t(W) t(W) t(W) - = 1 1 1 {Wb,Wc} {W = c} {W  b} p(W) p(W) p(W) W W W - = a b c ... a b c ... a b c ...

VE Example – Splitting parfactors Unification Residual 2 2 2 - = p(V) s(V) p(V) s(V) p(V) s(V) {V  c} {Vb,Vc} {V = b} V V V - = a b c ... a b c ... a b c ...

VE Example – Splitting parfactors Unification Residual 3 3 3 - = q(X,Y) p(Y) q(X,Y) p(Y) q(X,Y) p(Y) {} {Yb,Yc} {Y{b,c}} Y Y Y - = a b c ... a b c ... a b c ...

VE Example – Grounded view for each Y t(a) 1 q(a,a) 3 p(a) s(a) q(b,a) 2 3 ... t(d) 1 q(a,d) 3 p(d) s(d) q(b,d) 2 3 ...

VE Example – Grounded view t(a) for each Y for each X,Y 11/|X| t(a) q(a,a) p(a) s(a) 1 3 21/|X| q(a,a) 3 p(a) s(a) t(a) q(b,a) 2 11/|X| 3 ... q(b,a) p(a) s(a) 3 ... 21/|X| t(d) 11/|X| t(d) q(a,d) p(d) s(d) 1 3 21/|X| q(a,d) 3 p(d) s(d) t(d) q(b,d) 2 11/|X| 3 ... q(b,d) p(d) s(d) 3 ... 21/|X|

VE Example – Grounded view t(a) for each Y for each X,Y 11/|X| t(a) t(a) q(a,a) p(a) s(a) q(a,a) s(a) 1 3 21/|X| q(a,a) 4 =p(Y) 311/|X|21/|X| 3 p(a) s(a) t(a) q(b,a) 2 t(a) 11/|X| 3 ... q(b,a) p(a) s(a) q(b,a) s(a) ... 3 ... 21/|X| 4 t(d) t(d) 11/|X| t(d) q(a,d) p(d) s(d) q(a,d) s(d) 3 21/|X| 4 1 q(a,d) 3 p(d) s(d) t(d) q(b,d) 2 11/|X| t(d) 3 ... q(b,d) p(d) s(d) q(b,d) s(d) ... 3 ... 21/|X| 4

VE Example – Grounded view t(a) for each Y for each X,Y 11/|X| t(a) t(a) q(a,a) p(a) s(a) q(a,a) s(a) 1 3 21/|X| 4 q(a,a) 3 p(a) s(a) t(a) q(b,a) 2 t(a) 11/|X| 3 t(Y’) ... q(b,a) p(a) s(a) q(b,a) s(a) 3 ... 21/|X| ... 4 q(X,Y’) s(Y’) 4 t(d) {Y’b,Y’c} t(d) Emphasize that this is almost what intuition says, but not quite. 11/|X| t(d) q(a,d) p(d) s(d) q(a,d) s(d) 1 3 21/|X| 4 q(a,d) 3 p(d) s(d) t(d) q(b,d) 2 11/|X| t(d) 3 ... q(b,d) p(d) s(d) q(b,d) s(d) ... 3 ... 21/|X| ... 4

VE Example – Lifted view t(Y’) 1 {Y’b,Y’c} p(Y’) 3 2 q(X,Y’) p(Y’) p(Y’) s(Y’) {Y’b,Y’c} {Y’b,Y’c}

VE Example – Lifted view t(Y’) 1 {Y’b,Y’c} p(Y’) 3 2 q(X,Y’) p(Y’) p(Y’) s(Y’) {Y’b,Y’c} {Y’b,Y’c} t(Y’) 11/|X| p(Y’) s(Y’) 21/|X| 3 q(X,Y’) {Y’b,Y’c} {Y’b,Y’c} {Y’b,Y’c}

VE Example – Lifted view t(Y’) 1 {Y’b,Y’c} p(Y’) 3 2 t(Y’) q(X,Y’) p(Y’) p(Y’) s(Y’) q(X,Y’) s(Y’) {Y’b,Y’c} {Y’b,Y’c} p(Y) 311/|X|21/|X| {Y’b,Y’c} t(Y’) 11/|X| p(Y’) s(Y’) 21/|X| 3 q(X,Y’) {Y’b,Y’c} {Y’b,Y’c} {Y’b,Y’c}

VE Example 2 – Losing logic variables 1 2 q(X) p(Y) p(Y) s(Z) {} {} No constraints, so already unified; Logical variable Y will disappear.

VE Example 2 – Grounded view for each Y 1 2 q(a) s(a) p(a) 2 1 q(b) s(b) ... ... 1 2 q(a) s(a) p(b) 2 1 q(b) s(b) ... ...

VE Example 2 – Grounded view for each Y for each X,Y,Z 11/|Z| 21/|X| q(a) p(a) s(a) 11/|Z| 21/|X| 1 2 q(a) p(a) s(b) q(a) s(a) p(a) ... 2 1 11/|Z| 21/|X| q(b) s(b) q(b) p(a) s(a) ... ... 11/|Z| 21/|X| q(b) p(a) s(b) ... 11/|Z| 21/|X| q(a) p(b) s(a) 11/|Z| 21/|X| 1 2 q(a) p(b) s(b) q(a) s(a) ... p(b) 2 1 11/|Z| 21/|X| q(b) s(b) q(b) p(b) s(a) 11/|Z| 21/|X| ... ... q(b) p(b) s(b) ...

VE Example 2 – Grounded view for each Y for each X,Y,Z =p(Y) 11/|Z|21/|X| 11/|Z| 21/|X|  q(a) p(a) s(a) q(a) s(a) 11/|Z| 21/|X| 1 2  q(a) p(a) s(b) q(a) s(a) q(a) s(b) p(a) ... 2 ... 1 11/|Z| 21/|X|  q(b) s(b) q(b) p(a) s(a) q(b) s(a) ... ... 11/|Z| 21/|X|  q(b) p(a) s(b) q(b) s(b) ... ... 11/|Z| 21/|X|  q(a) p(b) s(a) q(a) s(a) 11/|Z| 21/|X|  1 2 q(a) p(b) s(b) q(a) s(b) q(a) s(a) ... ... p(b) 2 1  11/|Z| 21/|X| q(b) s(b) p(b) q(b) s(a) q(b) s(a)  11/|Z| 21/|X| ... ... p(b) s(b) q(b) s(b) q(b) ... ...

VE Example 2 – Grounded view for each Y for each X,Y,Z =p(Y) 11/|Z|21/|X| 11/|Z| 21/|X|  q(a) p(a) s(a) q(a) s(a) 11/|Z| 21/|X| 1 2  q(a) p(a) s(b) q(a) s(a) q(a) s(b) p(a) ... 2 ... 1 11/|Z| 21/|X|  q(b) s(b) q(b) p(a) s(a) q(b) s(a) ... ... 11/|Z| 21/|X|  q(b) p(a) s(b) q(b) s(b) |Y| repetitions each ... ... 11/|Z| 21/|X|  q(a) p(b) s(a) q(a) s(a) 11/|Z| 21/|X|  1 2 q(a) p(b) s(b) q(a) s(b) q(a) s(a) ... ... p(b) 2 1  11/|Z| 21/|X| q(b) s(b) p(b) q(b) s(a) q(b) s(a)  11/|Z| 21/|X| ... ... q(b) p(b) s(b) q(b) s(b) ... ...

VE Example 2 – Grounded view for each Y for each X,Y,Z =p(Y) 11/|Z|21/|X| 11/|Z| 21/|X|  q(a) p(a) s(a) q(a) s(a) 11/|Z| 21/|X| 1 2  q(a) p(a) s(b) q(a) s(a) q(a) s(b) p(a) ... 2 ... 1 11/|Z| 21/|X|  |Y| q(b) s(b) q(b) p(a) s(a) q(b) s(a) q(a) s(a) ... ... 11/|Z| 21/|X|  |Y| q(b) p(a) s(b) q(b) s(b) q(a) s(b) ... ... ... |Y| 11/|Z| 21/|X|  q(b) s(a) q(a) p(b) s(a) q(a) s(a) |Y| 11/|Z| 21/|X|  1 q(b) s(b) 2 q(a) p(b) s(b) q(a) s(b) q(a) s(a) ... ... ... p(b) 2 1  11/|Z| 21/|X| q(b) s(b) q(b) s(a) q(b) p(b) s(a)  11/|Z| 21/|X| ... ... p(b) s(b) q(b) s(b) q(b) ... ...

VE Example 2 – Grounded view for each X,Y,Z =p(Y) 11/|Z|21/|X| 11/|Z| 21/|X|  q(a) p(a) s(a) q(a) s(a) 11/|Z| 21/|X|  q(a) p(a) s(b) q(a) s(b) ... ... 11/|Z| 21/|X|  |Y| q(b) p(a) s(a) q(b) s(a) q(a) s(a) 11/|Z| 21/|X|  |Y| q(b) p(a) s(b) q(b) s(b) q(a) s(b) |Y| ... ... ... q(X) s(Z) |Y| 11/|Z| 21/|X|  q(b) s(a) {} q(a) p(b) s(a) q(a) s(a) |Y| 11/|Z| 21/|X|  q(b) s(b) q(a) p(b) s(b) q(a) s(b) ... ... ...  11/|Z| 21/|X| q(b) p(b) q(b) s(a) s(a)  11/|Z| 21/|X| q(b) p(b) s(b) q(b) s(b) ... ...

VE Example 2 – Lifted view 1 2 q(X) p(Y) p(Y) s(Z) {} {} (p(Y) 11/|Z|21/|X|)|Y| q(X) s(Z) {}

General Case ... q1(X1,Z) q2(X2,Z) qn(Xn,Z) 1 2 n p(Z,Y) p(Z,Y)

(q1(X1,Z),…,qn(Xn,Z)) = p(Z,Y)ii(Xi,Z,Y)|C(Y)|/|C(X\Xi)| General Case q1(X1,Z) q2(X2,Z) qn(Xn,Z) ... 1 2 n p(Z,Y) p(Z,Y) p(Z,Y) {C} {C} {C}  {C} ... q1(X1,Z) q2(X2,Z) qn(X1,Z) (q1(X1,Z),…,qn(Xn,Z)) = p(Z,Y)ii(Xi,Z,Y)|C(Y)|/|C(X\Xi)|

Conclusions Clear semantics; Probabilistic first order without grounding; Specialize parfactors only as needed through splitting them; Problem: no functions, but this can be fixed.

The End

VE Example 2 – Grounded view Master for each Y for each X,Y,Z =p(Y) 11/|Z|21/|X| 11/|Z| 21/|X|  q(a) p(a) s(a) q(a) s(a) 11/|Z| 21/|X| 1 2  q(a) p(a) s(b) q(a) s(a) q(a) s(b) p(a) ... 2 ... 1 11/|Z| 21/|X|  |Y| q(b) s(b) q(b) p(a) s(a) q(b) s(a) q(a) s(a) ... ... 11/|Z| 21/|X|  |Y| q(b) p(a) s(b) q(b) s(b) q(a) |Y| repetitions each s(b) |Y| ... ... ... q(X) s(Z) |Y| 11/|Z| 21/|X|  q(b) s(a) {} q(a) p(b) s(a) q(a) s(a) |Y| 11/|Z| 21/|X|  1 q(b) s(b) 2 q(a) p(b) s(b) q(a) s(b) q(a) s(a) ... ... ... p(b) 2 1  11/|Z| 21/|X| q(b) s(b) q(b) s(a) q(b) p(b) s(a)  11/|Z| 21/|X| ... ... p(b) s(b) q(b) s(b) q(b) ... ...

(q1(X1,Z),…,qn(Xn,Z)){C} = p(Z,Y)ii(Xi,Z,Y)|C(Y)|/|C(X – Xi)| General Case Parfactors i(qi(Xi,Z),p(Z,Y)){C}, i = 1,…,n Same set of constraints C for all of them Xi: logic variables unique to i p(Z,Y): literal being eliminated qi(Xi,Z): combination of all other literals in i Y: logic variables unique to p Z: logic variables in both p and all qi’s X: sequence X1,…,Xn (q1(X1,Z),…,qn(Xn,Z)){C} = p(Z,Y)ii(Xi,Z,Y)|C(Y)|/|C(X – Xi)|

Variable Elimination Same Bindings p(X) r(Y) p(X) 2 q(X,Y)  q(X,Y) 2 {X  U, Y  U} q(X,Y) r(Y) {X  U, Y  U} {X  U, Y  U} X  U X  U X  U Y  U Y  U Y  U

Variable Elimination Different Bindings, Same Variables p(X) r(Y) 2 q(X,Y)  {X = a, Y  U} No one to one correspondence! q(X,Y) {X  U, Y  U} X  U X = a Y  U Y  U

Splitting  p(X) p(X) p(X)    q(X,Y) q(X,Y) q(X,Y) {X  U, Y  U} {X = a, Y  U} {X  a, Y  U} X  U X = a X  a Y  U Y  U Y  U

Variable Elimination After Splitting p(X) r(Y) p(X) 2 q(X,Y)  q(X,Y) 2 {X = a, Y  U} q(X,Y) r(Y) {X = a, Y  U} {X = a, Y  U} X = a X = a X = a Y  U Y  U Y  U

Example - Grounding 3 t(a) t(b) t(c) t(d) q(a,a) p(a) ... 3 1 1 1 1 q(b,a) p(a) ... ... p(a) p(b) p(c) p(d) 3 q(a,b) p(b) 2 s(a) 3 p(a) Variables in common: p(Y’){Y’b,Y’c} q(b,b) p(b) 2 p(b) s(b) ... 3 2 q(a,c) p(c) p(c) s(c) 3 2 q(b,c) p(c) p(d) s(d) ... 3 ... q(a,d) p(d) ...

Probabilistic Propositional Logic 0.2: q 0.8: p  q 0.3: q  r 1: (p  q)  r   p  q 0.2 q p  p  

VE Example – Lifted view t(Y’) 1 {Y’b,Y’c} p(Y’) 3 2 q(X,Y’) p(Y’) p(Y’) s(Y’) {Y’b,Y’c} {Y’b,Y’c} t(d) 1 q(a,d) 3 p(d) s(d) q(b,d) 2 ... 3

VE Example – Lifted view t(Y’) {Y’b,Y’c} 1 {Y’b,Y’c} 2 p(Y’) t(Y’) p(Y’) s(Y’) 11/|X| {Y’b,Y’c} 3 q(X,Y’) p(Y’) p(Y’) p(Y’) s(Y’) q(X,Y’) p(Y’) 3 21/|X| {Y’b,Y’c} {Y’b,Y’c} {Y’b,Y’c} t(d) 11/|X| t(d) q(a,d) p(d) s(d) 1 3 21/|X| q(a,d) 3 p(d) s(d) t(d) q(b,d) 2 11/|X| ... 3 q(b,d) p(d) s(d) 3 ... 21/|X|

VE Example – Lifted view t(Y’) {Y’b,Y’c} 1 {Y’b,Y’c} 2 p(Y’) t(Y’) p(Y’) s(Y’) t(Y’) 11/|X| s(Y’) {Y’b,Y’c} q(X,Y’) 3 q(X,Y’) p(Y’) p(Y’) p(Y’) s(Y’) 4 q(X,Y’) p(Y’) 3 21/|X| {Y’b,Y’c} {Y’b,Y’c} {Y’b,Y’c} {Y’b,Y’c} t(d) t(d) 11/|X| t(d) q(a,d) p(d) s(d) q(a,d) s(d) 1 3 21/|X| 4 q(a,d) 3 p(d) s(d) t(d) q(b,d) 2 11/|X| t(d) ... 3 q(b,d) p(d) s(d) q(b,d) s(d) 3 ... 21/|X| 4

VE Example – Lifted view t(Y’) {Y’b,Y’c} 1 {Y’b,Y’c} 2 p(Y’) t(Y’) p(Y’) s(Y’) t(Y’) 11/|X| q(X,Y’) s(Y’) {Y’b,Y’c} 3 q(X,Y’) p(Y’) p(Y’) p(Y’) s(Y’) 4 q(X,Y’) t(Y’) p(Y’) 3 21/|X| {Y’b,Y’c} q(X,Y’) s(Y’) {Y’b,Y’c} {Y’b,Y’c} {Y’b,Y’c} 4 t(d) {Y’b,Y’c} t(d) 11/|X| t(d) q(a,d) p(d) s(d) q(a,d) s(d) 4 1 3 21/|X| q(a,d) 3 p(d) s(d) t(d) q(b,d) 2 11/|X| t(d) ... 3 q(b,d) p(d) s(d) q(b,d) s(d) 3 ... 21/|X| 4

Probabilistic Propositional Logic 0.2: q 0.8: p  q 0.3: q  r 1: (p  q)  r

Probabilistic Propositional Logic 0.3  0.2 q 0.2: q 0.8: p  q 0.3: q  r 1: (p  q)  r p  q 0.8  p p 

Probabilistic Propositional Logic 0.2: q 0.8: p  q 0.3: q  r 1: (p  q)  r

Probabilistic Propositional Logic 0.3  0.2 q 0.2: q 0.8: p  q 0.3: q  r 1: (p  q)  r p  q 0.8  p p 

Probabilistic Propositional Logic 0.2: q 0.8: p  q 0.3: q  r 1: (p  q)  r

Probabilistic Propositional Logic 0.4 if t, 0.5 otherwise noisy-or of (3) and (4) 1 if p  s and q 1 if p  s and q 0.3 if q and (p  s) 0.5 if q and (p  s) t r 0.2 q (1) 0.2: q (2) 0.8: p  q (3) 0.3: q  r (4) 1: (p  s)  r (5) 0.4: t  r 0.8 if p, 0.5 otherwise p s