Generation of CS-UWB DDL June 2005 Generation of CS-UWB CS-UWB can be generated by passing a pulse signal through a distributed delay line(DDL) such as a SAW DDL. Frequency DDL Time Amplitude Amplitude Time Pulse signal Frequency Li, Takizawa, Sasaki, Hara, Itami, Ikegami, Kohno, NICT
Correlated processing June 2005 Correlated processing Correlated processing produces not only high precision ranging but also robustness against noise and multipath. Correlated processing Correlator output B: 3-dB bandwidth of chirp T: time interval of chirp Time shift[s] The wide the bandwidth, the sharp the peak. Li, Takizawa, Sasaki, Hara, Itami, Ikegami, Kohno, NICT
Overall Block Diagram With Optional CS June 2005 Overall Block Diagram With Optional CS Transmitter Comm.data BW = 500MHz or 2GHz Coding & modulation Spreading Pulse shaping CHIRP GA Ranging data Local oscillator Receiver Pre-Select Filter LPF GA 1 or 2-bit ADC Decision/ FEC decoder Comm.data LNA De- CHIRP LPF GA 1 or 2-bit ADC Ranging data I Local oscillator Ranging processing Sync. Peak detection Q Time base Calculation Additional circuits to DS-UWB as an option Li, Takizawa, Sasaki, Hara, Itami, Ikegami, Kohno, NICT
Simulation results for SOP June 2005 Simulation results for SOP Li, Takizawa, Sasaki, Hara, Itami, Ikegami, Kohno, NICT
Advantages of Chirp Signaling June 2005 Advantages of Chirp Signaling High capacity for SOP Plenty of source with chirp Combination with FDM and/or CDM Additional link margins Low peak-to-average ratio. Robustness against interference and multipath Excellent correlation characteristics Potential high precision ranging. An selectivity for FFD and RFD Chirp vs. Non chirp Li, Takizawa, Sasaki, Hara, Itami, Ikegami, Kohno, NICT