Model Predictive Control

Slides:



Advertisements
Similar presentations
Chapter 1.) The Strategic Role of Human Resource Management.
Advertisements

1 Financial Mathematics Clicker review session, Final.
MTH 065 Elementary Algebra II Chapter 11 Quadratic Functions and Equations Section 11.0 Square Roots (An Introduction to Chapter 11)
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Phase Difference = Phase Difference = 0.05.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Squares & Square Roots Perfect Squares Lesson 12.
Squares & Square Roots PART I: Perfect Squares DEFINITION: the square of a whole number notes.
= 9 = 8 = 12 = 19 = 2 = 3 = 17 = 5 = 11 = 5.
Factoring Special Products Goal 1 Recognize Special Products Goal 2 Factor special products using patterns
Review for TEST #2: Topics are: 1)Rationalize the denominators. 2)Solving quadratic equations, using the quadratic formula. 3)Power of i. 4)Operations.
Essay Outline Quick and Easy Guide to Writing a Correct Essay.
Completing the Square.
Chapter 5: Elasticity. Elasticity A general concept used to quantify the response in one variable when another variable changes.
8.1.4 Can it still be factored? Factoring Completely I can factor out a common factor.
Factoring General Trinomials Factoring Trinomials Factors of 9 are: REVIEW: 1, 93, 3.
Model Predictive Impedance Control MPIC
Powers and roots. Square each number a) 7 b) 12 c) 20 d) 9 e) 40 a) 49 b) 144 c) 400 d) 81 e) 1600.
INTRODUCTION TO PRIME NUMBERS. A Reminder of Two Important Words Before we start to investigate Prime Numbers lets remind ourselves of Factors and Multiples.
Perfect squares: 1, 4, 9, __, __, __, __, __, __, __,…
Proof Methods & strategies Section 1.7. Proof by Cases We use the rule of inference P 1  P 2 ...  P n  q  (P 1  q)  (P 2  q) ..  (P n  q)
Model Based Control Strategies (Motor Learning). Model Based Control 1- Inverse Model as a Forward Controller (Inverse Dynamics) 2- Forward Model in Feedback.
Model Based Control Strategies. Model Based Control 1- Inverse Model as a Forward Controller (Inverse Dynamics) 2- Forward Model in Feedback 3- Combination.
Model Based Control Strategies (Motor Learning). Model Based Control 1- Inverse Model as a Forward Controller (Inverse Dynamics) 2- Forward Model in Feedback.
Notes 8.4 – MULTIPLYING SPECIAL CASES
Model Predictive Impedance Control MPIC. Motor Control Features 1.Feedback (closed loop) 2.Feedforward (open loop) 3.Learning 4.Predictive Control 5.Joint.
Chapter 14 Introduction to Regression Analysis. Objectives Regression Analysis Uses of Regression Analysis Method of Least Squares Difference between.
START HERE Startup: Place each value on the number line where it belongs.
基 督 再 來 (一). 經文: 1 你們心裡不要憂愁;你們信神,也當信我。 2 在我父的家裡有許多住處;若是沒有,我就早 已告訴你們了。我去原是為你們預備地去 。 3 我 若去為你們預備了地方,就必再來接你們到我那 裡去,我在 那裡,叫你們也在那裡, ] ( 約 14 : 1-3)
Model Based Control Strategies. Model Based Control 1- Inverse Model as a Forward Controller (Inverse Dynamics) 2- Forward Model in Feedback 3- Combination.
ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ 3 Ο ΜΑΘΗΜΑ. ΟΙ ΜΕΓΑΛΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Η δημιουργία μεγάλων επιχειρήσεων είναι ένα από τα χαρακτηριστικά του 20 ου αιώνα.
SPECIFIC OUTCOME #1: Determine the value of each square root: a. 9
Model Predictive Control
Chapter 8: Functions and Inequalities
Aim: How do we classify real numbers?
Have your project out and ready for collection!
Regression Chapter 6 I Introduction to Regression
Functions Learning Objectives To understand function notation
The Perfect Marriage! Ephesians 5:21-33.
Warm-Up.
Multi-tier System of Supports
ФОНД ЗА РАЗВОЈ РЕПУБЛИКЕ СРБИЈЕ
برنامج حماة المستقبل الدورة التدريبية لإعــداد المدربين
Squares & Square Roots Perfect Squares.
1.
Chapter 1: Introduction
Unit 2. Day 11..
Chapter 1: Introduction
Small Business Administration Entrepreneurship Track
LAB REPORT (50 pts) I- Title (1)
Chapter 1 Vocabulary 11.) square root 12.) radicand 13.) radical
Multi-tier System of Supports
Algebra 2/Trig Name __________________________
Square root Prime factorization
Square Roots.
Как да кандидатстваме по НИФ
ОПЕРАТИВНА ПРОГРАМА “ИНОВАЦИИ И КОНКУРЕНТОСПОСОБНОСТ“ „Подобряване на производствения капацитет в МСП“
'III \-\- I ', I ,, - -
Chapter 9. Design of Control Systems
I1I1 a 1·1,.,.,,I.,,I · I 1··n I J,-·
Simplify Radicals.
Solving Equations 3x+7 –7 13 –7 =.
Your Name Adolescent Risk Taking (Psych 4900) Weber State University
Example Make x the subject of the formula
Get Started!! x  , y  ______.
Counting Statistics and Error Prediction
,, 'III \-\-
Counting Statistics and Error Prediction
Types of Errors And Error Analysis.
U A B II III I IV 94.
Presentation transcript:

Model Predictive Control بسمه تعالی Model Predictive Control سعید شمقدری دانشکده مهندسی برق دانشگاه علم و صنعت ایران نیم سال دوم 93-92

CHAPTER 1: Introduction to Model Predictive Control

Example: Visually Guided Tracking System Paper: Smith Predictor Example: Visually Guided Tracking System Paper: Miall, R. C., Weir, D. J., Wolpert, D. M., and Stein, J. F., (1993), "Is the Cerebellum a Smith Predictor ?", Journal of Motor Behavior, 25, 203-216.

Smith Predictor

Smith Predictor Smith Predictor and MPC Outputs for Perfect Model Time (s) Smith Predictor and MPC Outputs for Perfect Model

Smith Predictor and MPC Outputs for Time Delay Mismatch Time (s) Smith Predictor and MPC Outputs for Time Delay Mismatch

Smith Predictor and MPC Outputs for Non-Minimum Phase System Time (s) Smith Predictor and MPC Outputs for Non-Minimum Phase System

Smith Predictor Error Case I Case II Case III Case IV Case V SPC 0.2664 0.3096 0.3271 0.3830 0.2485 MPC 0.0519 0.1363 0.1428 0.2525 0.0303 SPC = Smith Predcitor Controller, MPC = Model Predictive Controller, Error is root mean square errors (rad).