Volume 12, Issue 10, Pages (September 2015)

Slides:



Advertisements
Similar presentations
Volume 23, Issue 18, Pages (September 2013)
Advertisements

From: AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo
Volume 74, Issue 5, Pages (June 2012)
Volume 49, Issue 6, Pages (March 2006)
Jurian Schuijers, Laurens G. van der Flier, Johan van Es, Hans Clevers 
Functional Convergence at the Retinogeniculate Synapse
Volume 5, Issue 1, Pages (October 2013)
Mosaic Analysis with Double Markers in Mice
Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex
Antonio Jesús Hinojosa, Rubén Deogracias, Beatriz Rico  Cell Reports 
The Role of Dendritic Cells in S
Volume 87, Issue 6, Pages (September 2015)
Volume 5, Issue 3, Pages (November 2013)
Volume 43, Issue 5, Pages e3 (December 2017)
Euiseok J. Kim, Matthew W. Jacobs, Tony Ito-Cole, Edward M. Callaway 
Volume 96, Issue 4, Pages e5 (November 2017)
Volume 24, Issue 2, Pages (July 2018)
Crystal Structure of Tetrameric Arabidopsis MYC2 Reveals the Mechanism of Enhanced Interaction with DNA  Teng-fei Lian, Yong-ping Xu, Lan-fen Li, Xiao-Dong.
Volume 89, Issue 5, Pages (March 2016)
Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers
Jason Jacoby, Yongling Zhu, Steven H. DeVries, Gregory W. Schwartz 
Volume 13, Issue 9, Pages (December 2015)
Volume 31, Issue 6, Pages (September 2001)
Fabian N. Svara, Jörgen Kornfeld, Winfried Denk, Johann H. Bollmann 
Rosanna P. Sammons, Claudia Clopath, Samuel J. Barnes  Cell Reports 
Andrew R. Bassett, Charlotte Tibbit, Chris P. Ponting, Ji-Long Liu 
Volume 16, Issue 4, Pages (April 1996)
Volume 91, Issue 2, Pages (July 2016)
Volume 8, Issue 4, Pages (August 2014)
Volume 74, Issue 2, Pages (April 2012)
Abdul Q. Sheikh, Janet K. Lighthouse, Daniel M. Greif  Cell Reports 
Homeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina
Volume 21, Issue 3, Pages (October 2017)
Volume 60, Issue 4, Pages (November 2008)
TrkB-T1 is upregulated in cerebellum of Pex14ΔC/ΔC BL/ICR mouse at P3.
Isabelle Plaisance et al. BTS 2016;j.jacbts
The Cone Pedicle, a Complex Synapse in the Retina
Ryan G. Natan, Winnie Rao, Maria N. Geffen  Cell Reports 
BDNF expression in the cerebellum and brain stem region.
Volume 17, Issue 11, Pages (June 2007)
Volume 54, Issue 6, Pages (June 2007)
Volume 71, Issue 6, Pages (September 2011)
Volume 18, Issue 7, Pages (February 2017)
SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo
Cortical Feedback Regulates Feedforward Retinogeniculate Refinement
Local Extrinsic Signals Determine Muscle and Endothelial Cell Fate and Patterning in the Vertebrate Limb  Gabrielle Kardon, Jacquie Kloetzli Campbell,
Volume 8, Issue 6, Pages (September 2014)
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Target-Specific Glycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina  Nai-Wen Tien, Tahnbee.
From Functional Architecture to Functional Connectomics
Volume 87, Issue 6, Pages (September 2015)
Functional Integration of Adult-Born Neurons
Volume 21, Issue 3, Pages (October 2017)
Differentiating Cerebellar Impact on Thalamic Nuclei
Cell-Type Specificity of Callosally Evoked Excitation and Feedforward Inhibition in the Prefrontal Cortex  Paul G. Anastasiades, Joseph J. Marlin, Adam.
Marc Leushacke, Annie Ng, Joerg Galle, Markus Loeffler, Nick Barker 
Spontaneous Neurotransmitter Release Shapes Dendritic Arbors via Long-Range Activation of NMDA Receptors  Laura C. Andreae, Juan Burrone  Cell Reports 
Volume 18, Issue 7, Pages (February 2017)
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Volume 23, Issue 18, Pages (September 2013)
Volume 64, Issue 4, Pages (November 2009)
Claudia Lodovichi, Leonardo Belluscio, Lawrence C Katz  Neuron 
Macaque Satb2-RGCs are synaptically connected to geniculate neurons.
Piezo-like Gene Regulates Locomotion in Drosophila Larvae
SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo
Volume 15, Issue 5, Pages (May 2016)
An ipRGC axon collateral colocalized with the presynaptic marker bassoon makes contact with TH-positive DAC processes. An ipRGC axon collateral colocalized.
Volume 26, Issue 12, Pages e3 (March 2019)
Refinement of the Retinogeniculate Synapse by Bouton Clustering
Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts  Bin Lin, Steven W Wang, Richard H Masland 
Presentation transcript:

Volume 12, Issue 10, Pages 1575-1583 (September 2015) Multiple Retinal Axons Converge onto Relay Cells in the Adult Mouse Thalamus  Sarah Hammer, Aboozar Monavarfeshani, Tyler Lemon, Jianmin Su, Michael Andrew Fox  Cell Reports  Volume 12, Issue 10, Pages 1575-1583 (September 2015) DOI: 10.1016/j.celrep.2015.08.003 Copyright © 2015 The Authors Terms and Conditions

Cell Reports 2015 12, 1575-1583DOI: (10.1016/j.celrep.2015.08.003) Copyright © 2015 The Authors Terms and Conditions

Figure 1 Labeling of RGCs and Retinal Axons with Brainbow AAVs (A) Schematic representing the constructs of each of the two brainbow AAVs used in these studies. Following Cre recombination, these two constructs generate either farnesylated Tag-blue fluorescent protein (BFP) or enhanced yellow fluorescent protein (EYFP), or monomeric Cherry fluorescent protein (mChe) or monomeric teal fluorescent protein (mTFP). EF1 represent regulatory elements from the elongation 1α gene and W represents elements from the woodchuck hepatitis virus posttranscriptional regulatory element. Lox site mutants are depicted with gray triangles. For additional details, see Cai et al. (2013). (B) Confocal image of a P35 retinal cross-section following intraocular injection of brainbow AAV into calb2-cre mice. Note the ability to delineate the dendritic arbor of the green-labeled RGC from adjacent fluorescently labeled RGCs. (C) Confocal image of a P35 retinal whole mount following intraocular injection of brainbow AAV into calb2-cre mice. (D) Confocal image of differentially labeled RGC axons in a P35 retinal whole-mount brainbow AAV::calb2-cre mouse. (E) Color analysis at five locations (1–5) along the six axons labeled in (D) (labeled A–F). The color boxes represent the colors at each point highlighted along the axons. Numbers in the boxes represent the red (R), green (G), and blue (B) color intensity values at each point along the axons. Note the relative similar distribution of “color” along each axon. (F and G) A single retinal axon labeled with brainbow AAVs in the “core” region of dLGN of a P35 calb2-cre mouse. (G) Color analysis for the three boutons highlighted by arrows in (F). (H and I) Terminals from three distinct retinal axons converging at a single cluster following labeling with brainbow AAVs in the “core” region of dLGN of a P35 calb2-cre mouse. (I) Color analysis for the three boutons highlighted in (H). Scale bar in (B), 50 μm, in (D), 50 μm, in (C), 100 μm and in (F), 6 μm for (F) and (H). Cell Reports 2015 12, 1575-1583DOI: (10.1016/j.celrep.2015.08.003) Copyright © 2015 The Authors Terms and Conditions

Figure 2 Clusters of Retinal Terminals in dLGN Contain Boutons from Multiple Retinal Axons (A) Maximum projection, confocal image of retinal axons, and terminals labeled with brainbow AAVs in the “core” and “shell” region of dLGN of P35 calb2-cre mice. White and yellow dashed lines on the right indicate the “core” and “shell” regions of dLGN in this image. Arrowheads highlight retinal axons traversing this region of dLGN. (B–K) High-magnification images of the retinal boutons indicated by arrows in (A). B′–K′ show color analysis for terminals highlighted with arrowheads in (B)–(K). Scale bar in (A), 20 μm for (A) and 7 μm for (B)–(K). Cell Reports 2015 12, 1575-1583DOI: (10.1016/j.celrep.2015.08.003) Copyright © 2015 The Authors Terms and Conditions

Figure 3 Ultrastructural Analysis and Reconstruction of Retinal Axons Contributing to “Simple Encapsulated” Retinogeniculate Synapses in dLGN (A and B) SBFSEM images of two retinal terminals synapsing onto the same relay cell dendrite in the “shell” region of dLGN. (C) 3D reconstruction of the two RGC terminal boutons from (A) and (B) converging on a single relay cell dendrite. (D and E) SBFSEM images of two retinal terminals from the same RGC axon making synaptic contact with two distinct relay cell dendrites in the “shell” region of dLGN. (F) 3D reconstruction of the retinal axon and relay cell dendrites from (D) and (E). Scale bar in (B), 1.5 μm for (A) and (B), and in (E), 1.5 μm for (D) and (E). Cell Reports 2015 12, 1575-1583DOI: (10.1016/j.celrep.2015.08.003) Copyright © 2015 The Authors Terms and Conditions

Figure 4 Ultrastructural Analysis and Reconstruction of Retinal Axons Contributing to “Complex Encapsulated” Retinogeniculate Synapses in dLGN (A–D) SBFSEM images of six retinal terminals synapsing onto the same relay cell dendrite (pseudo-colored in bright green) in the “shell” region of dLGN. (E) Key indicates the types of cellular elements pseudo-colored in (A)–(D) and (F)–(H). (F) 3D reconstruction of all of the elements pseudo-colored in (A)–(D). (G) 3D reconstruction of three RGC axons, an inhibitory interneuron dendrite and the relay cell dendrite in (A)–(D). (H) 3D reconstruction of a single RGC axon and the relay cell dendrite in (A)–(D). Arrow indicates a retinal bouton that makes synaptic contact with an element other than the relay cell dendrite pseudo-colored bright green. (I–K) SBFSEM images of 14 retinal terminals synapsing onto the same relay cell dendrite (pseudo-colored in bright yellow). (L) Key indicates the types of cellular elements pseudo-colored in (I)–(K) and (M)–(O). (M) 3D reconstruction of all of the elements pseudo-colored in (I)–(K). (N) 3D reconstruction of three RGC axons and the relay cell dendrite in (I)–(K). (O) 3D reconstruction of a single RGC axon and the relay cell dendrite in (I)–(K). Arrow indicates a retinal bouton that makes synaptic contact with an element other than the relay cell dendrite pseudo-colored bright yellow. Scale bar in (D), 1.5 μm for (A)–(D), and in (K), 1.5 μm for (I)–(K). Cell Reports 2015 12, 1575-1583DOI: (10.1016/j.celrep.2015.08.003) Copyright © 2015 The Authors Terms and Conditions