a Bang-Bang Type Controller

Slides:



Advertisements
Similar presentations
Structural Dynamics Laboratory Department of Engineering Science, University of Oxford First European Conference on Earthquake Engineering and Seismology,
Advertisements

,, Seismic Protection of Benchmark Cable-Stayed Bridge using Hybrid Control Strategy.
2002 Control of a Seismically Excited Cable-Stayed Bridge Employing a Hybrid Control Strategy ,
Finite element seismic analysis of a guyed mast
Optimal placement of MR dampers
Scissor-Jack-Damper System for Reduction of Stay Cable
MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법
1 Westinghouse Non-Proprietary Class 3© 2012 Westinghouse Electric Company LLC. All Rights Reserved. Structural Analysis of a Nuclear Fuel Handling Machine.
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Konstantinos Agrafiotis
Robust control Saba Rezvanian Fall-Winter 88.
Department for ENGINEERING STRUCTURES Professor Vlado MICOV, Ph.D Head of Department.
Record Processing Considerations for Analysis of Buildings Moh Huang California Strong Motion Instrumentation Program California Geological Survey Department.
NORM BASED APPROACHES FOR AUTOMATIC TUNING OF MODEL BASED PREDICTIVE CONTROL Pastora Vega, Mario Francisco, Eladio Sanz University of Salamanca – Spain.
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Cheng Chen Ph.D., Assistant Professor School of Engineering San Francisco State University Probabilistic Reliability Analysis of Real-Time Hybrid Simulation.
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
EWEC 2007, MilanoMartin Geyler 1 Individual Blade Pitch Control Design for Load Reduction on Large Wind Turbines EWEC 2007 Milano, 7-10 May 2007 Martin.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
Computational Structural Engineering Institute Autumn Conference 2002 Oct , 2002 VIBRATION CONTROL OF BRIDGE FOR SERVICEABILITY Jun-Sik Ha 1),
Presented by: Sasithorn THAMMARAK (st109957)
Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings Kyu-Sik.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 A Comparative Study on Aseismic Performances of Base Isolation Systems for Multi-span Continuous.
1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce.
Hybrid System Controlled by a  -Synthesis Method for a Seismically Excited Cable-Stayed Bridge 2004 추계 학술대회 소음진동분야 NRL 2 지진하중을 받는 사장교를 위한  - 합성법을 이용한.
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
Speaker : Yunjeong Son Master’s Course, Hongik University
Probabilistic seismic hazard assessment for the pseudo-negative stiffness control of a steel base-isolated building: A comparative study with bilinear.
1 Cesos-Workshop-March-2006 RELIABILITY-BASED STRUCTURAL OPTIMIZATION FOR POSITIONING OF MARINE VESSELS B. J. Leira, NTNU, Trondheim, Norway P. I. B. Berntsen,
The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor,
Kyu-Sik Park Kyu-Sik Park, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Research Assistant Professor, KAIST, Korea In-Won Lee In-Won Lee,
University of Illinois Contribution Amr S. Elnashai Sung Jig Kim Curtis Holub Narutoshi Nakata Oh Sung Kwon Seismic Simulation and Design of Bridge Columns.
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
HYBRID SYSTEM CONTROLLED BY A  -SYNTHESIS METHOD International Symposium on Earthquake Engineering Commemorating 10 th Anniversary of the 1995 Kobe Earthquake.
Aristotelis Charalampakis and Vlasis Koumousis
Seismic analysis of Bridges Part II
년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원.
Eduardo Ismael Hernández UPAEP University, MEXICO
Design Spectra.
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
Aristotelis Charalampakis and Vlasis Koumousis
Feasibility of Using Simple Adaptive Control Strategy for Dynamic Bridge Response Under Stiffness Variation. Rachel W. Soares, Luciana R. Barroso, Omar.
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Robust Hybrid Control System
Robust Hybrid Control System
A Survey on State Feedback AMD Control
Design Spectra.
Control of a Hybrid System using a -Synthesis Method
Presentation transcript:

a Bang-Bang Type Controller 2003년도 한국전산구조공학회 봄 학술발표회 2003. 4. 12. Hybrid Control with a Bang-Bang Type Controller 박규식, 한국과학기술원 건설 및 환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 조상원, 한국과학기술원 건설 및 환경공학과 박사과정 이인원, 한국과학기술원 건설 및 환경공학과 교수

Contents Introduction HCS with a bang-bang type controller Numerical examples Conclusions

Introduction Hybrid control system (HCS) Cable-stayed bridge  A combination of passive and active devices  Higher level of performance  Reliable and robust Cable-stayed bridge  Aesthetic shape, structural efficiency and economical construction  Very flexible due to low structural damping  Vibration control is needed to protect the bridge.

Objective of this study Apply robust hybrid control system for seismic protection of a cable-stayed bridge

HCS with a bang-bang type controller Control devices  Passive control devices • Lead rubber bearings (LRBs) • Design procedure: Ali and Abdel-Ghaffar (1995) • Bouc-Wen model  Active control devices • Hydraulic actuators (HAs) • An actuator capacity has a capacity of 1000 kN. • The actuator dynamics are neglected.

Control algorithm  Primary control scheme • Linear quadratic Gaussian (LQG) algorithm • Optimal weighting matrix: Maximum response approach  Secondary control scheme • Bang-Bang type controller according to LRB’s responses

Block diagram of hybrid control system Bridge Model HCS Block diagram of hybrid control system

Hybrid control with a bang-bang type controller Bridge Model Sensor LQG On/Off HA LRB MUX Hybrid control with a bang-bang type controller

Numerical examples Analysis model  Bridge model • Bill Emerson Memorial Bridge · Benchmark control problem · Under construction in Cape Girardeau, MO, USA · 16 Shock transmission devices (STDs) are employed between the tower-deck connections.

Schematic of the Bill Emerson Memorial Bridge

: Accelerometer : Displacement sensor Location of sensor 142.7 m

Configuration of control devices (HAs+LRBs) 142.7 m 350.6 m 2+3 4+3 Configuration of control devices (HAs+LRBs)

 Historical earthquake excitations PGA: 0.348g

 Historical earthquake excitations PGA: 0.348g PGA: 0.143g

 Historical earthquake excitations PGA: 0.348g PGA: 0.143g PGA: 0.265g

 Evaluation criteria • Structural response J1/J7 : Peak/Normed base shear J2/J8 : Peak/Normed shear at deck level J3/J9 : Peak/Normed overturning moment J4/J10 : Peak/Normed moment at deck level J5/J11 : Peak/Normed cable tension deviation J6: Deck dis. at abutment • Control strategy J12: Peak control force, J13: Device stroke J14: Peak power, J15: Total power J16: No. of control devices, J17: No. of sensors J18:

Analysis results  Control performances (a) Time-history response (b) Frequency response Base shear force record at pier 2 under El Centro earthquake

Restoring force record of LRB at pier 2

• Maximum evaluation criteria for all the three earthquakes Passive Active Hybrid J1. Max. base shear 0.5459 0.4898 0.5125 J2. Max. deck shear 1.4616 1.1706 0.9510 J3. Max. base moment 0.6188 0.4562 0.4439 J4. Max. deck moment 1.2656 0.8803 0.6737 J5. Max. cable deviation 0.2077 0.1469 0.1479 J6. Max. deck dis. 3.8289 1.8079 1.6787 J7. Norm base shear 0.4211 0.3820 0.3824 J8. Norm deck shear 1.5502 0.9737 0.9366 J9. Norm base moment 0.4815 0.3591 0.3435 J10. Norm deck moment 1.4429 0.7659 0.8196 J11. Norm cable deviation 2.233e-2 1.622e-2 1.718e-2

• Actuator requirements Earthquake Max. Active Hybrid 1940 El Centro NS Force(kN) 1000 Stroke(m) 0.0984 0.0740 Vel. (m/s) 0.5502 0.5480 1985 Mexico City 649.37 332.13 0.0403 0.0278 0.2452 0.2003 1990 Gebze NS 924.57 0.1300 0.1207 0.4197 0.4226 Actuator requirement constraints Force: 1000 kN, Stroke: 0.2 m, Vel.: 1m/sec

 Controller robustness • The dynamic characteristic of as-built bridge is not identical to the numerical model. • To verify the applicability of HCS, the controller robustness is investigated to perturbation of stiffness parameter. where : nominal stiffness matrix : perturbed stiffness matrix : perturbation amount

*: Active control system using 32 HAs (-synthesis) • Maximum variations of evaluation criteria for the ±7% stiffness perturbation systems under El Centro earthquake (%) Evaluation criteria Turan (2001)* Active Hybrid J1. Max. base shear 36.9 9.1 J2. Max. deck shear 52.0 68.0 21.8 J3. Max. base moment 22.5 50.1 6.2 J4. Max. deck moment 31.0 27.3 5.1 J5. Max. cable deviation 9.2 7.0 5.6 J6. Max. deck dis. 19.0 16.3 2.3 J7. Norm base shear 47.4 196.4 7.2 J8. Norm deck shear 35.3 335.2 5.3 J9. Norm base moment 28.5 138.1 7.4 J10. Norm deck moment 18.7 84.5 13.3 J11. Norm cable deviation 31.3 71.0 17.1 *: Active control system using 32 HAs (-synthesis)

(a) Time-history response (b) Frequency response Base shear force record at pier 2 in the 7% stiffness perturbed bridge model under El Centro earthquake 23

 Could be used to seismically excited cable-stayed bridges Conclusions HCS with a bang-bang type controller  More effective than passive or active control system in reducing structural responses  Robust for stiffness matrix perturbation due to the passive control part and bang-bang type controller  Could be used to seismically excited cable-stayed bridges

Thank you for your attention! Acknowledgements This research is supported by the National Research Laboratory and Smart Infra-Structure Technology Center. Thank you for your attention!