Neutron spectrometry in fusion energy research

Slides:



Advertisements
Similar presentations
Ion Heating and Velocity Fluctuation Measurements in MST Sanjay Gangadhara, Darren Craig, David Ennis, Gennady Fiskel and the MST team University of Wisconsin-Madison.
Advertisements

TOF spectrometers for measurement of n d /n t ratios K.Okada, T.Nishitani 2, K. Ochiai 2, K.Kondo 2, M.Sasao, M. Okamoto, K.Shinto, S.Kitajima Tohoku Univ.
Advanced GAmma Tracking Array
for Fusion Power Monitoring
Neutron background measurements at LNGS Gian Luca Raselli INFN - Pavia JRA1 meeting, Paris 14 Feb
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
Paul Sellin, Radiation Imaging Group Digital pulse shape discrimination applied to capture-gated neutron detectors P.J. Sellin, S. Jastaniah, W. Catford.
S. Zuberi, University of Rochester Digital Signal Processing of Scintillator Pulses Saba Zuberi, Wojtek Skulski, Frank Wolfs University of Rochester.
Neutron background measurement at LNGS: present status Measurement carried out in collaboration between LNGS ILIAS-JRA1 and ICARUS groups.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
The Time-of-Flight system of the PAMELA experiment: in-flight performances. Rita Carbone INFN and University of Napoli RICAP ’07, Rome,
Institute for Safety Research Dávid Légrády IP-EUROTRANS ITC2 Development of a Neutron Time-of-Flight Source at the ELBE Accelerator ELBE Neutron source.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
2D Position Sensitive Detector for Plasma diagnosis
Kaschuck Yu.A., Krasilnikov A.V., Prosvirin D.V., Tsutskikh A.Yu. SRC RF TRINITI, Troitsk, Russia Status of the divertor neutron flux monitor design and.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Solar observation modes: Commissioning and operational C. Vocks and G. Mann 1. Spectrometer and imaging modes 2. Commissioning proposals 3. Operational.
A scintillation detector for neutrons below 1 MeV with gamma-ray rejection Scintillators are 3 mm BC408, 10 layers total Adjacent layers are optically.
On the use of LIBS to determine the fractional abundances of carbon ions in the laser plasma plume M. Naiim Habib 1, Y. Marandet 2, L. Mercadier 3, Ph.
Possibilities of TOF measurements on NPI neutron generators Mitja Majerle Department of Nuclear Reactions Nuclear Physics Institute ASCR.
Recent status of dark matter search with ULE-HPGe detector Tsinghua University Qian Yue nd Korea-China Joint Seminar on Dark Matter Search.
Plasma diagnostics using spectroscopic techniques
ITPA-Moscow Role of neutron emission spectrometry on ITER and instrumental requirements Göran Ericsson E.Andersson Sundén, A.Combo 2), S.Conroy,
1 ITPA St Petersburg April 2009G.Gorini JET results on the determination of thermal/non-thermal fusion yield from neutron emission spectroscopy.
Status of Møller Polarimeter Peter-Bernd Otte September 23, th Collaboration Meeting, Mainz.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Digital analysis of scintillator pulses generated by high-energy neutrons. Jan Novák, Mitja Majerle, Pavel Bém, Z. Matěj 1, František Cvachovec 2, 1 Faculty.
Measurements of the (n,xn) reactions cross sections using new digital methods. Habib Karam Group GRACE.
Pellet Charge Exchange Measurement in LHD & ITER ITPA Tohoku Univ. Tetsuo Ozaki, P.Goncharov, E.Veschev 1), N.Tamura, K.Sato, D.Kalinina and.
Status on 25 Mg(n,  ) and neutron flux in 2012 Bologna, 27 November 2013 C. Massimi.
Passive detectors (nuclear track detectors) – part 2: Applications for neutrons This research project has been supported by the Marie Curie Initial Training.
1 IDM2004 Edinburgh, 9 september 2004 Helenia Menghetti Bologna University and INFN Study of the muon-induced neutron background with the LVD detector.
Preliminary results of a detailed study on the discharge probability for a triple-GEM detector at PSI G. Bencivenni, A. Cardini, P. de Simone, F. Murtas.
Neutron detection in LHe ( HMI run 2004) R.Golub, E. Korobkina, J. Zou M. Hayden, G. Archibold J. Boissevain, W.S.Wilburn C. Gould.
Absolute neutron yield measurement using divertor NFM Kaschuck Yu.A., Krasilnikov A.V., Prosvirin D.V., Tsutskikh A.Yu. SRC RF TRINITI, Troitsk, Russia.
Neutron diagnostics for fusion experiments
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
Medical applications of particle physics General characteristics of detectors (5 th Chapter) ASLI YILDIRIM.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Study on the Neutronic Characteristics of Subcritical Reactors Driven by an Accelerated Pulsed Proton Beam Ali Ahmad.
1 Nuclear Fusion Class : Nuclear Physics K.-U.Choi.
1 LTR 2004 Sudbury, December 2004 Helenia Menghetti, Marco Selvi Bologna University and INFN Large Volume Detector The Large Volume Detector (LVD)
Multi-Purpose Fast Neutron Spectrum Analyzer with Real-Time Signal Processing Yu.S. Sulyaev 1, E.A. Puryga 1,2, A.D. Khilchenko 1,2, A.N. Kvashnin 1, S.V.
Measurement of prompt fission g-rays with lanthanum halide scintillation detectors A. Oberstedt This work was supported by the EFNUDAT programme of the.
Solar gamma-ray and neutron registration capabilities of the GRIS instrument onboard the International Space Station Yu. A. Trofimov, Yu. D. Kotov, V.
Fast neutron flux measurement in CJPL
Gamma Ray Spectrometry System Design for ITER Plasma Diagnostics
SoLid: Recent Results and Future Prospects
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
Associazione EURATOM-ENEA sulla Fusione
Preliminary study for Soft X-ray Spectroscopy in VEST
A Digital Pulse Processing System Dedicated to CdZnTe Detectors
Project Structure Advanced Neutron Spectrometer on the International Space Station (ANS-ISS) Mark Christl NASA/MSFC Oct 23, 2015 Honolulu, HI 1 1.
Start Detector for pion experiments
Triple GEM detectors : measurements of stray neutron.
the s process: messages from stellar He burning
High rate capability of gas ionization chamber with flash ADC
Diagnostics of FRIBs beam transport line
Luminosity Monitor Status
Neutron Detection with MoNA LISA
1. Introduction Secondary Heavy charged particle (fragment) production
Presented at 2016 IEEE Nuclear Science Symposium - N28-32
Status of Neutron flux Analysis in KIMS experiment
Neutron Beam Test for Measuring Quenching Factor of CsI(Tl) Crystal
HE instrument and in-orbit performance
High Harmonic Analysis Using a COLTRIMS Technique
Mirko Salewski Technical University of Denmark Department of Physics
Gain measurements of Chromium GEM foils
Presentation transcript:

Neutron spectrometry in fusion energy research Göran Ericsson, Erik Andersson Sundén M.Cecconello, S.Conroy, M.Gatu Johnson, L.Giacomelli, C.Hellesen, A.Hjalmarsson, J.Källne, E.Ronchi, H.Sjöstrand, M.Weiszflog Uppsala University G.Gorini, M.Tardocchi, J.Sousa, A.Murari, S.Popovichev Milano-Bicocca, IST, JET Outline: Neutron emission in fusion experiments Role of diagnostics, measurement conditions Spectrometer design and techniques The ToF technique; TOFOR Thin-foil proton recoil technique; MPRu Outlook and Conclusions Frontiers … Rome, 2009 1 See also poster by E.Andersson Sundén

Neutron emission Fusion experiments with D and T fuel: “Impurities” Thermal RF RF Simulation JET; D Fusion experiments with D and T fuel: d + d  3He + n (2.45 MeV) d + t  4He + n (14.0 MeV) “Impurities” d + 3He, 4He, 9Be, 12C, ...  n + X Plasma parameters: Pfus, Ti, f(vion),… Fuel ion velocity populations: Thermal  f(En) Gaussian RF heating  f(En) anisotropic, double humped Beam heating, alpha heating, … Spectral components (ITER): Thermal bulk Sn  1, Beam heating Sn  0.1, RF heating Sn  0.01, a heating Sn  0.001, Neutron emission variations: Intensity; 0 - 1020 n/s (ITER) Temporal (ms), spatial (cm) Scatter Background T = total spectrum, B = thermal bulk NBI = neutral beam AKN = alpha knock-on Simulation ITER; DT n rate JET; D Rn [1015 s-1] Frontiers … Rome, 2009 2

Role and situation for diagnostics Provide information on relevant plasma/fuel ion parameters Feed-back for active control; ms time frame Extended n source (100 m3), “continuous” n emission (min) Collimated LOS, direct + scattered spectral contributions Reliable, robust techniques Harsh experimental conditions around the “reactor” Neutron and gamma background High-frequency EM interference High levels of temperature, B-field Competition over “real estate”; LOS, position, weight, space, … Challenges for neutron spectroscopy Results on ms  spectroscopy on MHz signal rates (Ccap) High e OR close to reactor core Access to weak emission components  high S/B ratio > 104 Peaked, well-known response function (0 – 20 MeV) Real-time information in ms  data acq., processing, transfer Frontiers … Rome, 2009 3

Neutron spectroscopy techniques Most “standard” n spectr Neutron spectroscopy techniques Most “standard” n spectr. techniques tested in fusion (JET) NE213, Stilbene, nat. + CVD diamond Reginatto, Zimbal, RSI 79 (2008)- PTB work Krasilnikov, Rev Sci Instr 69 (1997) Lattanzi, Angelone, Pillon , Fus Eng Des (2009) TOFOR - UU Gatu Johnson, NIM A591 (2008) Frontiers … Rome, 2009 4 TANDEM (TPR) - Harwell Hawkes, RSI 70 (1999) 1134 MPRu - UU Andersson Sundén, NIM A610 (2009)

Time-of-flight Optimized for Rate Optimized for 2.45 MeV n in D plasmas Continuous source of n: Double scattering in S1 + S2 16m from plasma 2m concrete floor Fast plastic scintillators: 5x S1 disks 32x S2 “umbrella” S2 tilt to compensate for Dtlight e ≈ 1% Background = randoms B  Rn2  S:B  Rn Limitations: “Paralysis” at high Rn Rate in S1 (≈ MHz) Ccap ≈ 500 kHz (S:B ≈ 1) Cmax ≈ 44 kHz (Rn = 1.7∙1016 n/s) Emphasis on rate capability: Digital free-running time stamping Separate, non-correlated p.h. spectra En = 2mnR/ttof2 R n” n’ Frontiers … Rome, 2009 5 n flux

TOFOR – count rate capability Limiting sensitivity: random coincidences No correlated time – p.h. information  Randoms corrected for on statistical level  Uniform level from ttof < 0 Digital time stamping electronics (IST, Portugal) Dead time free: ALL signal events recorded (+ ALL randoms) Event based correlations: reduce randoms, reduce timing walk S1 S2 Frontiers … Rome, 2009 6

Thin-foil Magnetic Proton Recoil Separation of functions: n-to-p conversion in thin (mm) foil Energy (momentum) separation in B-field Counting in position resolved hodoscope (32 phoswich scint.) Focal plane detector (FPD) can be shielded to any required level Detectors need “only” count protons Flexibility: Multiple conversion foils – 2.5/14 MeV Multiple p collimators Background reduction: Concrete + lead radiation shield Phoswich scintillators, tdecay = 2, 180 ns TR digital boards Digital pulse shape discrimination Performance: Ccap >> MHz (Cmax = 0.61 MHz) S:B  20000:1 (14-MeV in DT), TOFOR Frontiers … Rome, 2009 7 5:1 (2.5-MeV in D)

MPR results Strong candidate for ITER Alpha heating in DT; MPR 1997 Observation of weak components Alpha heating signature – knock-on n Phoswich DPSD Scattered n Bgr/statistics Background 14-MeV p LED pulser Phoswich DPSD 2.5 mm 0.3 mm 2.5-MeV p 14-MeV p 14-MeV n Min. ionizing e- Amplitude Qshort Qlong Preliminary phoswich DPSD analysis Protons from T burn-up n (14-MeV) Component at 1% of 2.5 MeV emission LED for PMT gain monitoring system Frontiers … Rome, 2009 8 TR boards: 8 bit, 200 MSPS, 512 MB Baseline restoration, pile-up rejection Standard DPSD: 2D plot of Qlong/Qshort Strong candidate for ITER

The future Conclusions Combined pulse-height/time digitizing boards for ToF Compact spectrometers for neutron camera; NE213, CVDD Neutron spectroscopy system for ITER: 2.5-MeV n spectrometer for D operations; ToF 14-MeV n spectrometer for high power DT; MPR/TPR Real-time applications Innovative, new concepts … Conclusions Harsh experimental conditions; special requirements Challenges for Fusion neutron spectrometry: Count rate capability – provide plasma information Background rejection – study weak emission comp. Dynamic range/sensitivity – varying plasma cond. Frontiers … Rome, 2009 9