The selection rules for vibration rotation transitions are

Slides:



Advertisements
Similar presentations
R. S. RAM and P. F. BERNATH Department of Chemistry, University of York, Heslington, York YO10 5DD, UK. and Department of Chemistry, University of Arizona,
Advertisements

(e: the flame) / increasing O 2 /i.e.: / exothermic reactions: / energy / products / reaction path.
Infrared Astronomy The image above is an aitoff projection of the sky centered on the center of the Milky Way Galaxy (in the constellation Sagittarius).
Spitzer mid-IR image of the DR21 region in the Cygnus-X molecular complex Image Credit: NASA, Spitzer Space Telescope.
1 Chapter Contents 1. Basics of Optical Spectrum Analysers 2. Fabry-Perot Interferometers 3. Interferometers-based Optical Spectrum Analysers 4. Diffraction.
Finding FingerprintsXDAP 16|11|2004 FINDING FINGERPRINTS Probing the interaction between comets and the solar wind Dennis Bodewits Xander Tielens, Ronnie.
Taking the fingerprints of stars, galaxies, and interstellar gas clouds Absorption and emission from atoms, ions, and molecules.
Chapter 11: The Interstellar Medium Region in the Constellation Orion named the Orion Nebula which is the closest star formation region to us. Jets and.
Vibrational Transitions
SIRTF NASA’s Space InfraRed Telescope Facility Alyssa A. Goodman Professor of Astronomy Harvard University.
INTRO TO SPECTROSCOPIC METHODS (Chapter 6 continued ) Quantum-Mechanical Properties Of Light Photoelectric Effect Photoelectric Effect Energy States of.
LASER Induced Fluorescence of Iodine Eðlisefnafræði 5 – 30. mars 2006 Ómar Freyr Sigurbjörnsson.
Nebular Astrophysics.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 18.
The Radio Sky Chris Salter NAIC/Arecibo Observatory.
Slide 2/26 Schedule Lecture 1: Electronic absorption spectroscopy Jahn-Teller effect and the spectra of d 1, d 4, d 6 and d 9 ions Lecture 2: Interpreting.
Photoelectron Spectrometers Survey of the Universe Harry Kroto 2004.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Lecture 30: The Milky Way. topics: structure of our Galaxy structure of our Galaxy components of our Galaxy (stars and gas) components of our Galaxy (stars.
H = ½ ω (p 2 + q 2 ) The Harmonic Oscillator QM.
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Harry Kroto 2004 Sodium Flame Test. © at: commons.wikimedia.org/wiki/File:Flametest--Na...commons.wikimedia.org/wiki/File:Flametest--Na...
Bill Madden  = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Square of the transition moment  n  e  m  2 2.Frequency.
Harry Kroto 2004 Candle Flame.
The anomalous DIBs in the spectrum of Herschel 36 II. Analysis of radiatively excited CH +, CH, and diffuse interstellar bands Takeshi Oka, Daniel E. Welty,
The anomalous DIBs in the spectrum of Herschel 36 II. Analysis of radiatively excited CH +, CH, and diffuse interstellar bands Takeshi Oka, Daniel E. Welty,
What I did for Spring Break …. Bit of Administration …. ReadingReading –BSNV Chaps. 7 and 8 Particularly important discussion section -Particularly important.
70 th International Symposium on Molecular Spectroscopy June 2015 First Scientific Observations with the New ALMA Prototype Antenna of the Arizona Radio.
STARK AND ZEEMAN EFFECT STUDY OF THE [18.6]3.5 – X(1)4.5 BAND OF URANIUM MONOFLUORIDE, UF COLAN LINTON, ALLAN G. ADAM University of New Brunswick TIMOTHY.
co.jp/.../star/m olecule/orion.h tm Two Giant Molecular Clouds in Orion superimposed on the optical image Just how big is this Giant Molecular.
Spiral Galaxy - Canis Venitici We can only see about 1/6 (ca 6000ly) of the way to the Galctic Centre due to scattering by gas and dust in the disk.
AClassical Description >E = T + V Harry Kroto 2004.
Halley Harry Kroto Hale-Bopp Stromboli Observatory Harry Kroto 2004.
Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 
Nebula Images. Nebula.
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
Rosetta/OSIRIS observations of gas in the inner coma of 67P
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
Spectroscopy from Space
He  He+  O+  OH+  OH2+  OH3+  OH2 +e + He + H + H + H + H
The Born-Oppenheimer Separation
A Green Bank Telescope Search for ortho-benzyne (o-C6H4) in CRL 618
Only three lines observed R(0) R(1) P(1)
Chemistry in Interstellar Space
HCO+ in the Helix Nebula
“Forbidden Transitions”
Molecular Line Surveys
Xianming Liu, Paul V. Johnson, Charles P. Malone
Orionid Meteor Project
Atomic Absorption Process
DETECTING MOLECULAR LINES IN THE GHz FREQUENCY RANGE
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Einstein Coefficients
Rigid Diatomic molecule
Doppler Shifts of Interstellar NaD lines
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
Region in the Constellation Orion named the Orion Nebula which is the closest star formation region to us. Jets and disks appear to be part of the star.
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
The Great Orion Nebula Star Formation Region
Molecules Harry Kroto 2004.

Betelgeuse Bellatrix Mintaka Anilam Alnitak Flame and Horsehead →
CO Laboratory rotational infrared spectrum
at: ircamera.as.arizona.edu/.../magneticearth.htm
Far infrared rotational spectrum of CO J= B
The second serendipitous radio discovery
V
©.
Harry Kroto 2004.
Presentation transcript:

The selection rules for vibration rotation transitions are J’= 5 The selection rules for vibration rotation transitions are ∆v = ±1 ∆J = ±1 v” J”= 5

Excited Electronic State J’= 5 v’ = 0 R(3) R(2) R(1) R(0) v” = 0 J”= 5 R Branch

Excited Electronic State J’= 5 v’ = 0 P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch

Excited Electronic State J’= 5 v’ = 0 P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch

Excited Electronic State J’= 5 v’ = 0 P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 Central section of the CN 0-0 Band R Branch P Branch

Rotational Structure of the 0-0 band of CN at 3883Å observed from Comet Bennett (1970 II)

NASA Comet image Harry Kroto 2004

Rotational Structure of the 0-0 band of CN at 3883Å observed from Comet Bennett (1970 II) Harry Kroto 2004

Harry Kroto 2004

Rotational Structure of the 0-0 band of CN at 3883Å observed from Comet Bennett (1970 II) Harry Kroto 2004

Electronic Emission Spectrum 3883 Å 4216 Å 4606 Å CN Violet Electronic Emission Spectrum 0-1 0-2 0-0 R(0) P(1) R Branch P Branch 25850 25750 cm-1 25750 cm-1 Rotational Structure of the 0-0 band of CN at 3883Å observed from Comet Bennett (1970 II)

J V’ J V”

J + 1 J V’ J – 1 J V”

J + 1 J B’ J (J+ 1) V’ J – 1 J B”J (J+ 1) V”

J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 J B”J (J+ 1) V”

J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J J B”J (J+ 1) V”

J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J J B”J (J+ 1) V”

J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J R(J) J B”J (J+ 1) V”

J + 1 B’ (J+ 1)(J+2) J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J R(J) P(J) J B”J (J+ 1) V”

J + 1 B’ (J+ 1)(J+2) J J – 1 B’ (J – 1) J R(J) P(J) J B”J (J+ 1)

J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J R(J) P(J) J B”J (J+ 1) V”

J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) R(J) P(J) J B”J (J+ 1) V”

J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) R(J) P(J) J B”J (J+ 1) V” Harry Kroto 2004

J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) B’ (4J + 2) R(J) P(J) J B”J (J+ 1) V”

J + 1 B’ (J+ 1)(J+2) B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) B’ (4J + 2) = 4B’(J + ½) R(J) P(J) J B”J (J+ 1) V”

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch P(4) P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 Central section of the P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 Central section of the CN 0-0 Band R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 Central section of the P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 Central section of the CN 0-0 Band R Branch P Branch Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch P(4) P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Electronic Emission Spectrum of CN Radical in a Bunsen Burner Flame v’= 0 C + N v”=3 2 1 r  Harry Kroto 2004

Rotational Structure J’= 5 v’ = 0 v” = 0 J”= 5 R Branch P Branch v” = 0 J”= 5 R Branch P Branch Harry Kroto 2004

J’+ 1 B’ (J+ 1)(J+2) R(J) P(1) B” J (J+ 1) J” R Branch If B” ~ B’ o + 2B J Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Halley Harry Kroto 2004

Halley Harry Kroto 2004

Hale-Bopp Stromboli Observatory Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Align the spectrometer slit across the split tail Charged species tail Align the spectrometer slit across the split tail Dust and neutral species tail Harry Kroto 2004

Align the spectrometer slit across the split tail Harry Kroto 2004

Align the spectrometer slit across the split tail Charged species tail Align the spectrometer slit across the split tail Harry Kroto 2004

Align the spectrometer slit across the split tail Charged species tail Align the spectrometer slit across the split tail Dust and neutral species tail Harry Kroto 2004

Dust and neutral species tail H2O+ NH2 Charged species tail Dust and neutral species tail Align the spectrometer slit across the split tail Harry Kroto 2004

Two serendipitous radio discoveries Harry Kroto 2004

The Crab Nebula Norwegian Observatory Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Orion Constellation Harry Kroto 2004