Volume 26, Issue 22, Pages (November 2016)

Slides:



Advertisements
Similar presentations
Voice Cells in the Primate Temporal Lobe
Advertisements

A Multisensory Network for Olfactory Processing
Volume 27, Issue 7, Pages (April 2017)
A Source for Feature-Based Attention in the Prefrontal Cortex
Araceli Ramirez-Cardenas, Maria Moskaleva, Andreas Nieder 
A Sparse Object Coding Scheme in Area V4
Aaron R. Seitz, Praveen K. Pilly, Christopher C. Pack  Current Biology 
Volume 27, Issue 22, Pages e3 (November 2017)
Pre-constancy Vision in Infants
Shape representation in the inferior temporal cortex of monkeys
Pattern and Component Motion Responses in Mouse Visual Cortical Areas
Jason A. Cromer, Jefferson E. Roy, Earl K. Miller  Neuron 
Visual Attention: Bottom-Up Versus Top-Down
Volume 26, Issue 4, Pages (February 2016)
Mental Imagery Changes Multisensory Perception
Visual Motion and the Perception of Surface Material
Volume 66, Issue 6, Pages (June 2010)
Selective Attention in an Insect Visual Neuron
There's more to magic than meets the eye
Volume 81, Issue 6, Pages (March 2014)
Volume 21, Issue 2, Pages (January 2011)
Rodrigo Quian Quiroga, Alexander Kraskov, Christof Koch, Itzhak Fried 
Vincent B. McGinty, Antonio Rangel, William T. Newsome  Neuron 
Visual Cortex: The Eccentric Area Prostriata in the Human Brain
Differential Impact of Behavioral Relevance on Quantity Coding in Primate Frontal and Parietal Neurons  Pooja Viswanathan, Andreas Nieder  Current Biology 
Sensorimotor Learning Configures the Human Mirror System
Volume 27, Issue 19, Pages e2 (October 2017)
Volume 26, Issue 13, Pages (July 2016)
Dynamic Coding for Cognitive Control in Prefrontal Cortex
Rapid Innate Defensive Responses of Mice to Looming Visual Stimuli
Huihui Zhou, Robert Desimone  Neuron 
What We Know Currently about Mirror Neurons
Single-Unit Responses Selective for Whole Faces in the Human Amygdala
Independent Category and Spatial Encoding in Parietal Cortex
Heidi C. Meyer, David J. Bucci  Current Biology 
Ethan S. Bromberg-Martin, Masayuki Matsumoto, Okihide Hikosaka  Neuron 
Sharon C. Furtak, Omar J. Ahmed, Rebecca D. Burwell  Neuron 
Volume 27, Issue 21, Pages e3 (November 2017)
Neuronal Response Gain Enhancement prior to Microsaccades
Pattern and Component Motion Responses in Mouse Visual Cortical Areas
Optic flow induces spatial filtering in fruit flies
Adaptation can explain evidence for encoding of probabilistic information in macaque inferior temporal cortex  Kasper Vinken, Rufin Vogels  Current Biology 
Volume 24, Issue 14, Pages (July 2014)
Daniel E. Winkowski, Eric I. Knudsen  Neuron 
Jingping P. Xu, Zijiang J. He, Teng Leng Ooi  Current Biology 
Martijn Barendregt, Ben M. Harvey, Bas Rokers, Serge O. Dumoulin 
Visual Adaptation of the Perception of Causality
Cognitive neural prosthetics
Computer Use Changes Generalization of Movement Learning
Gestures Orchestrate Brain Networks for Language Understanding
Volume 18, Issue 5, Pages (March 2008)
Masayuki Matsumoto, Masahiko Takada  Neuron 
Paolo Domenici, David Booth, Jonathan M. Blagburn, Jonathan P. Bacon 
Raghav Rajan, Allison J. Doupe  Current Biology 
Volume 16, Issue 20, Pages (October 2006)
Jason A. Cromer, Jefferson E. Roy, Earl K. Miller  Neuron 
Encoding of Stimulus Probability in Macaque Inferior Temporal Cortex
Tuning to Natural Stimulus Dynamics in Primary Auditory Cortex
Volume 16, Issue 20, Pages (October 2006)
When Correlation Implies Causation in Multisensory Integration
Filling-in afterimage colors between the lines
Claudia Lunghi, Uzay E. Emir, Maria Concetta Morrone, Holly Bridge 
Daniela Vallentin, Andreas Nieder  Current Biology 
The challenge of measuring long-term positive aftereffects
Experience-Driven Plasticity in Binocular Vision
Lysann Wagener, Maria Loconsole, Helen M. Ditz, Andreas Nieder 
Christoph Kayser, Nikos K. Logothetis, Stefano Panzeri  Current Biology 
Supratim Ray, John H.R. Maunsell  Neuron 
Nonvisual Motor Training Influences Biological Motion Perception
Maria J.S. Guerreiro, Lisa Putzar, Brigitte Röder  Current Biology 
Presentation transcript:

Volume 26, Issue 22, Pages 3077-3082 (November 2016) Mirror Neurons in Monkey Premotor Area F5 Show Tuning for Critical Features of Visual Causality Perception  Vittorio Caggiano, Falk Fleischer, Joern K. Pomper, Martin A. Giese, Peter Thier  Current Biology  Volume 26, Issue 22, Pages 3077-3082 (November 2016) DOI: 10.1016/j.cub.2016.10.007 Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 1 Neural Encoding of Observed Naturalistic Actions in F5 Mirror Neurons (A) Test movie (Movie S1) presenting a hand grasping an object (grasping) followed by same movie with reversed temporal order of frames (placing). (B) Firing rates of four typical example units after temporal realignment (reversing and aligning temporal axis for placing stimulus). Neurons 1 and 2 show preferences for grasping versus placing, whereas neurons 3 and 4 do not show such a preference. (C) Histogram of the temporal averages of the difference index (DI) for neurons with selectivity for grasping, placing, and neurons without significant preference. (D) Time courses of the DIs for the individual neurons (with preferences for grasping, placing, and non-selective ones). Neurons are ordered along vertical axis with respect to the time points of the extrema of the DI over time (N1 and N2 indicate neurons shown in B). See also Figures S1 and S2. Current Biology 2016 26, 3077-3082DOI: (10.1016/j.cub.2016.10.007) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 2 Responses to Abstract Causality Stimuli versus Naturalistic Actions (A) Naturalistic stimuli (n) and abstract stimuli, generated by replacing hand (h) or hand and object by discs (c) (see the Supplemental Information and Movie S1). (B) Spike train of two example neurons for the three stimulus types. (C) Time courses of the DIs for the individual neurons for natural and abstract stimuli. Ordering of the neurons along the vertical axis is the same in both panels (cf. Figure 1D). (D) Difference indices for stimulus classes (n) and (c) (correlation r2 = 0.68; p < 0.001). See also Movies S2 and S3. Current Biology 2016 26, 3077-3082DOI: (10.1016/j.cub.2016.10.007) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 3 Responses to Causal and Non-causal Stimuli versus Naturalistic Actions Correlations between DIs for naturalistic and control stimuli (left) and distances between the neural trajectories for the naturalistic stimulus and different control stimuli (right). The first three control stimuli (gray bars) leave the causal relationships between the stimulus elements intact. The last seven control conditions (black bars) reduce the impression of causality in humans. Asterisks indicate significant differences between stimulus groups; p < 0.05 (see the main text, Figure S3, and the Supplemental Information for further details). See also Movies S1, S2, and S3. Current Biology 2016 26, 3077-3082DOI: (10.1016/j.cub.2016.10.007) Copyright © 2016 Elsevier Ltd Terms and Conditions