ALMA: Resolving (optically) obscured galaxy formation

Slides:



Advertisements
Similar presentations
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Advertisements

The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
Magic of (sub)mm L _FIR = 1.5e12 L _sun 3mJy  Distance independent probe of universe  Biased to > ULIRGs.
Dusty star formation at high redshift Chris Willott, HIA/NRC 1. Introductory cosmology 2. Obscured galaxy formation: the view with current facilities,
ESO Galaxy Formation: The Radio Decade (Dense Gas History of the Universe) Chris Carilli (NRAO) Santa Fe, March 2011 Power of radio astronomy: dust, cool.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR)
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Radio observations of massive galaxy and black hole formation in the early Universe Chris Carilli (NRAO) MPIA, Heidelberg, Aug 7, 2009  Introductory remarks.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 HyLIRG (10 13 L o ) pair: Quasar host Obscured SMG SFR ~ 10 3 ; M H2 ~ Iono ea 2007 Salome ea
High Frequency (> 10GHz) Thermal science at centimeter wavelengths, and more! Chicago III, Sept. 15, 2007 Washington DC Chris Carilli (NRAO)
Dust emission from powerful high-z starbursts and QSOs The combined power of submillimeter and mid-IR studies for tracing the most powerful starbursts.
Normal/Starburst Galaxies at Low/Intermediate-z with ALMA Bologna, 2005 June 6.
Studying the gas, dust, and star formation in the first galaxies at cm and mm wavelengths Chris Carilli, KIAA-PKU reionization workshop, July 2008  QSO.
1 National Radio Astronomy Observatory – Town Hall AAS 211 th Meeting – Austin, Texas Science Synergies with NRAO Telescopes Chris Carill NRAO.
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 HyLIRG (10 13 L o ) pair: Quasar host Obscured SMG SFR ~ 10 3 ; M H2 ~ Iono ea 2007 Salome ea
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 Quasar-SMG pair Both HyLIRG Both detected in CO Iono ea 2007 Omont ea ”4” HST 814 Hu ea 96.
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
New tales of molecular gas in galaxies: (not so) near and far Jeff Wagg Max-Planck/NRAO Fellow NRAO – Socorro NRAO postdoc symposium Socorro April 29,
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) Cool Univ.
ALMA: Imaging the cold Universe Great observatories May 2006 C. Carilli (NRAO) National Research Council Canada.
Radio astronomical probes of the 1 st galaxies Chris Carilli, Aspen, February 2008  Current State-of-the-Art: gas, dust, star formation in QSO host galaxies.
C.Carilli, AUI Board October 2006 ISAC-run three year process: Quantified ‘experiments’ for future large area cm telescopes 50 chapters, 90 authors, 25%
ESO Radio observations of the formation of the first galaxies and supermassive black holes Chris Carilli (NRAO) Keck Institute, August 2010 Current State-of-Art:
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) CfA Sept.
The Evolution of Galaxies: From the Local Group to the Epoch of Reionization Fabian Walter National Radio Astronomy Observatory.
Cosmic ‘Background’Radiation Franceschini The Gunn Peterson Effect Fan et al 2003 z=6.3 z=5.80 z=5.82 z=5.99 z=6.28 Cosmic reionization at z =6.3.
Warm Dust in the Most Distant Quasars Ran Wang Department of Astronomy, Peking University, China.
The M BH -  star relation at the highest redshifts Fabian Walter (MPIA)
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
ESO Radio observations of the formation of the first galaxies and supermassive Black Holes Chris Carilli (NRAO) Notre Dame Astrophysics March 30, 2010.
Molecular Gas in (very) Distant Galaxies Fabian Walter (MPIA) F. Bertoldi, C. Carilli, P. Cox, K. Menten, A. Weiss.
ESO The other side of galaxy formation: radio line and continuum ‘Great Surveys’ Santa Fe November 2008 Chris Carilli NRAO.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Radio observations of massive galaxy and black hole formation in the early Universe Chris Carilli (NRAO) MPE, Garching, July 16, 2009  Introductory remarks.
Galaxy Evolution and WFMOS
Dust, cool gas, and star formation in z>6 SMBH host galaxies
Purple Mountain Observatory, May 2010
Evidence for a Population of high redshift Submm Galaxies
ALMA studies of the first galaxies
Radio multiobject spectrograph C
Probing the Faint Radio Population
First galaxies: cm/mm observations Carilli (NRAO)
Xiaohui Fan University of Arizona June 21, 2004
SKA KSP: probing cosmic reionization and the first galaxies
1st galaxies: cm/mm observations – fuel for galaxy formation
ALMA: Imaging the cold Universe
Giant Clouds and Star Clusters in the Antennae
1.4 GHz Source Counts (Hopkins 2000)
What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA’s observational capabilities.
ALMA and Cosmology The high-redshift Universe Advantages of mm/submm
HERSCHEL and Galaxies/AGN “dust and gas”
C.Carilli (NRAO) Heidelberg 05
Magic of (sub)mm Biased to > ULIRGs L_FIR = 1.5e12 L_sun 3mJy
Chris Wilson, McMaster University
Radio observations of dust and cool gas in the first galaxies
ALMA: Imaging the cold Universe
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
Evolution of radio telescopes (Braun 1996)
Chris Carilli (NRAO) AAS06 NRAO 50th.
Observing Molecules in the EoR
Presentation transcript:

ALMA: Resolving (optically) obscured galaxy formation Dusty04, C. Carilli (NRAO) IR Optical Franceschini 2000 Cosmic Background Radiation

Obscured galaxy formation: low redshift (Meier & Turner 2004) IC342 distance = 2 Mpc M_gas = 4e7 M_sun SFR = 0.1 M_sun/yr Starburst age = 1e7 yrs 30” = 300pc

Obscured galaxy formation: high redshift (Downes et al 2002; Dunlop et al 2003) PdBI/VLA position => K = 23.5 (Dunlop et al.) I – K > 5.2 z = 4 +/- 1 (?) S_250 = 2.1 +/- 0.3 mJy S_1.4 = 16 +/- 4 uJy L_FIR=7e12 L_sun Grav. Mag. = 3x (?) Single Scuba galaxy dominates SFR at z>2 in HDF over 10000 optical galaxies!

UV selected galaxies – large range in bolometric luminosity, but little correlation of L_uv and L_bol Adelberger 2000

Magic of (sub)mm L_FIR = 4e12 x S_250(mJy) L_sun for z=0.5 to 8

(sub)mm Dust, molecular gas Near-IR: Stars, ionized gas, AGN Enabling Technology I: sensitivity – Arp 220 vs z (FIR=1.6e12 L_sun) cm: Star formation, AGN (sub)mm Dust, molecular gas Near-IR: Stars, ionized gas, AGN

Enabling technology II: Resolution 10’s mas resolution, T_B = 0.3 K: GMCs at 200Mpc ALMA PdBI/CARMA

Nearby star forming Galaxies – Chemistry/Physics: IC342, D=2Mpc Meier & Turner 2004 CO: all gas 300pc HC3N: Dense C2H: PDRs ALMA: Image with GMC resolution (50pc) to 250 Mpc Rich clusters: Virgo = 16 Mpc, Coma = 100 Mpc ULIRGs: Arp 220 = 75 Mpc, Mrk 273 = 160 Mpc

Nearby Gals II: Dynamics: ‘feeding the nucleus’ – NGC6946, D=5.5Mpc Schinnerer et al., in prep. Nearby Gals II: Dynamics: ‘feeding the nucleus’ – NGC6946, D=5.5Mpc PdBI 0.5” CO(2-1) - Gas Lanes along Bar Streaming Motions Gas Disk w/ R <15pc ALMA: extend to Mrk 231 at 180 Mpc Cygnus A at 240 Mpc 100 pc

Probing the epoch of “galaxy formation” : z = 1.5 – 3.5 Optical gals IR/(sub)mm gals Comparable SFR at high z in dusty starbursts as optical galaxies?

(sub)mm Source counts (Blain 2002) ALMA ALMA: 2e6 gals/deg^2 HDF: 4e6 gals/deg^2 Big Difference: ALMA gals (mostly) at z > 1 HST gals (mostly) at z < 1 Lensed fields Current bolometers

L_FIR vs L’(CO) (Beelen + 04) PdBI/Carma z>2 1e3 M_sun/yr ALMA z>2 Index=1 1e11 M_sun Index=1.7

SKA and ALMA: Optimal CO searches ALMA: discovers 10 gals/hr z=0.5 – 2.5 SKA: discovers 10 gals/hr z=4

HCN 1-0 emission: VLA detections n(H_2) > 1e5 cm^-3 (vs. CO: n(H_2) > 1e3 cm^-3) Current z>2 Solomon et al Index=1 z=2.58 ALMA z>2 (if constant T_b) 70 uJy

Main ISM cooling line: [CII] 158um (vd Werf 2004)

PKS 2322+1944 z=4.12: CO Einstein ring VLA CO2-1 0.4” res PdBI PdBI [CI] (492 GHz rest) => Solar Metallicity (Pety 2004)

Very wide field surveys: role of bolometer cameras Bolometers (+ EVLA, Spizter): survey large areas to sub-mJy sensitivity ALMA: detailed SED and CO follow-up ALMA: uJy, narrow field surveys

Enabling technology III: Wideband spectroscopy – Redshifts for obscured/faint sources: 8 - 32 GHz spectrometers on ALMA, LMT, GBT (Min Yun 04, Harris 04) L_FIR = 1e13 L_sun ALMA

History of IGM ionized CoIs: Walter, Bertoldi, Cox, Omont, Beelen, Fan, Strauss... Neutral F(HI)=1 Epoch of Reionization (EoR) bench-mark in cosmic structure formation indicating the first luminous structures Ionized F(HI)=1e-5

The Gunn-Peterson Effect z=5.80 z=5.82 z=5.99 z=6.28 Fast reionization at z=6.3 => opaque at l_obs<0.9mm 1e-3 Fan et al 2003 1e-5

WMAP Large scale polarization of CMB (Kogut et al.) 20deg Thompson scattering at EoR t_e = 0.17 => F(HI) < 0.5 at z=17 Complex reionization from z=6 to 15?

Objects within EoR – QSO 1148+52 at z=6.4 highest redshift quasar known L_bol = 1e14 L_sun central black hole: 1-5 x 109 Msun => M_bulge = 1.5e12 M_sun (Willot etal.) clear Gunn Peterson trough (Fan etal.)

“Pre-ALMA Science” – 1148+52 Dust + CO detection z=6.42 S_250 = 5.0 mJy => L_FIR = 1.2e13 L_sun, M_dust=7e8 M_sun S Dv = 0.2 Jy km/s => M(H_2) = 2e10 M_sun VLA CO 3-2 46.6149 GHz MAMBO 3’ Off channels rms = 60 uJy Prodigious dust and molecular gas formation within 0.9 Gyr of big bang eg. Dust formation in SNR/massive stars?

Typical of starburst nucleus IRAM Plateau de Bure n2 (6-5) (7-6) (3-2) Tkin=100K, nH2=105cm-3 FWHM = 305 km/s z = 6.419 +/- 0.001 Typical of starburst nucleus

VLA imaging of CO3-2 at 0.4” and 0.15” resolution rms=50uJy at 47GHz CO extended to NW by 1” (=5.5 kpc) tidal(?) feature M_dyn (r<2.5kpc) = 5e10 M_sun => break-down of M-s relation => SMBH form first? Separation = 0.3” = 1.7 kpc T_B = 20K = T_B (starburst) Merging galaxies? Or Dissociation by QSO?

Stellar spheroid formation in few e7 yrs = e-folding time for SMBH 1148+5251: radio-FIR SED Beelen et al. S_1.4= 55 +/- 12 uJy 1048+46 T_D = 50 K Star forming galaxy characteristics: radio-FIR SED, L’_CO/FIR, CO excitation and T_B => Coeval starburst/AGN: SFR = 1000 M_sun/yr Stellar spheroid formation in few e7 yrs = e-folding time for SMBH => Coeval formation of galaxy/SMBH at z = 6.4 ?

Objects within the EoR – nearIR detection of ‘normal’ star forming galaxy at z=6.56 (Hu et al) L_uv = 2e10 L_sun + LBG dust correction (5x) => L_FIR=1e11 L_sun S_250 = 0.03 mJy => 4s ALMA detection in 3 hrs Expect 1 – 2 “normal” galaxies ALMA FoV at z>6

ALMA – de-obscuring galaxy formation I. Seeing through the dust: Physics, chemistry, dynamics of star formation at GMC scale to 250Mpc Unveiling the “submm” galaxy population at z=1 to 3 => ½ SFHU II. First light: Seeing through neutral IGM (GP=> limited to NIR to radio) Study dust, gas, star formation in the first luminous sources Currently limited to pathological systems (‘HLIRGs’) ALMA, EVLA 10-100x sensitivity is critical to study normal galaxies z=6.4

mm VLBI 10’s mas resolution ALMA mmVLBI PdBI/CARMA

Millimeter VLBI – Imaging the Galactic center black hole (Falcke 2000) Kerr R_g = 3 uas Schwarzschild Model: opt. thin synch 0.6 mm VLBI 16uas res 1.3 mm VLBI 33 uas res

mm-vlbi of the Galactic center (Krichbaum 1998)