Semiconductor Device Modeling & Characterization Lecture 21

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Professor Ronald L. Carter
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Lecture 16 ANNOUNCEMENTS OUTLINE MOS capacitor (cont’d)
Professor Ronald L. Carter
Lecture 19 OUTLINE The MOSFET: Structure and operation
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE130/230A Discussion 8 Peng Zheng.
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Semiconductor Device Modeling & Characterization Lecture 19
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Professor Ronald L. Carter
Presentation transcript:

Semiconductor Device Modeling & Characterization Lecture 21 Professor Ronald L. Carter ronc@uta.edu Spring 2001 L21 April 3

Fully biased n-MOS capacitor VG Channel if VG > VT VS VD EOx,x> 0 n+ e- e- e- e- e- e- n+ p-substrate Vsub=VB Depl Reg Acceptors y L21 April 3 L

Flat band with oxide charge (approx. scale) SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev L21 April 3

MOS energy bands at Si surface for n-channel Fig 8.10** L21 April 3

Fully biased n- channel VT calc L21 April 3

Q’d,max and xd,max for biased MOS capacitor Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) L21 April 3

n-channel VT for VC = VB = 0 Fig 10.20* L21 April 3

Flat-band parameters for p-channel (n-subst) L21 April 3

Fully biased p- channel VT calc L21 April 3

p-channel VT for VC = VB = 0 Fig 10.21* L21 April 3

Differential charges for low and high freq From Fig 10.27* L21 April 3

Ideal low-freq C-V relationship Fig 10.25* L21 April 3

Comparison of low and high freq C-V Fig 10.28* L21 April 3

Effect of Q’ss on the C-V relationship Fig 10.29* L21 April 3

Conductance of inverted channel Q’n = - C’Ox(VGC-VT) n’s = C’Ox(VGC-VT)/q, (# inv elect/cm2) The conductivity sn = (n’s/t) q mn G = sn(Wt/L) = n’s q mn (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’sqmnW) L21 April 3

Basic I-V relation for MOS channel L21 April 3

n-channel enhancement MOSFET in ohmic region 0< VT< VG Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- n+ Depl Reg p-substrate Acceptors VB < 0 L21 April 3

Conductance of inverted channel Q’n = - C’Ox(VGC-VT) n’s = C’Ox(VGC-VT)/q, (# inv elect/cm2) The conductivity sn = (n’s/t) q mn G = sn(Wt/L) = n’s q mn (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’sqmnW) L21 April 3

I-V relation for n-MOS (ohmic reg) ID non-physical ID,sat saturated VDS,sat VDS L21 April 3

Universal drain characteristic ID VGS=VT+3V 9ID1 ohmic saturated, VDS>VGS-VT VGS=VT+2V 4ID1 VGS=VT+1V ID1 VDS L21 April 3

Characterizing the n-ch MOSFET VD ID D G S B VT VGS L21 April 3

Low field ohmic characteristics L21 April 3

MOSFET circuit parameters L21 April 3

MOSFET circuit parameters (cont) L21 April 3

Substrate bias effect on VT (body-effect) L21 April 3

Body effect data Fig 9.9** L21 April 3

References *Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 L21 April 3