Crystal Structure of Saccharopine Reductase from Magnaporthe grisea, an Enzyme of the α-Aminoadipate Pathway of Lysine Biosynthesis  Eva Johansson, James.

Slides:



Advertisements
Similar presentations
Volume 11, Issue 3, Pages (March 2003)
Advertisements

Volume 121, Issue 7, Pages (July 2005)
Volume 10, Issue 1, Pages (January 2002)
Volume 8, Issue 3, Pages (March 2000)
Volume 20, Issue 6, Pages (June 2013)
Structure of the Rab7:REP-1 Complex
Volume 3, Issue 3, Pages (March 1999)
Structure of an LDLR-RAP Complex Reveals a General Mode for Ligand Recognition by Lipoprotein Receptors  Carl Fisher, Natalia Beglova, Stephen C. Blacklow 
Yu Luo, Su-Chen Li, Min-Yuan Chou, Yu-Teh Li, Ming Luo  Structure 
Volume 6, Issue 10, Pages (October 1998)
Volume 3, Issue 9, Pages (September 1995)
Crystal structure of mammalian purple acid phosphatase
Volume 5, Issue 1, Pages (January 1997)
Volume 124, Issue 2, Pages (January 2006)
Volume 10, Issue 9, Pages (May 2000)
Tom Huxford, De-Bin Huang, Shiva Malek, Gourisankar Ghosh  Cell 
Volume 8, Issue 5, Pages (May 2000)
Structure of RGS4 Bound to AlF4−-Activated Giα1: Stabilization of the Transition State for GTP Hydrolysis  John J.G. Tesmer, David M. Berman, Alfred G.
Crystal Structure of Riboflavin Synthase
Volume 10, Issue 12, Pages (December 2002)
Volume 3, Issue 11, Pages (November 1995)
Einav Gross, David B Kastner, Chris A Kaiser, Deborah Fass  Cell 
Volume 8, Issue 7, Pages (July 2000)
Catalytic Center Assembly of HPPK as Revealed by the Crystal Structure of a Ternary Complex at 1.25 Å Resolution  Jaroslaw Blaszczyk, Genbin Shi, Honggao.
A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism  Yorgo Modis,
Volume 94, Issue 4, Pages (August 1998)
Volume 8, Issue 7, Pages (July 2000)
Volume 11, Issue 5, Pages (May 2003)
Crystal Structure of PMM/PGM
Volume 8, Issue 11, Pages (November 2000)
Structure and Mechanism of Homoserine Kinase
Volume 6, Issue 10, Pages (October 1998)
Volume 6, Issue 11, Pages (November 1998)
Peter Trickey, Mary Ann Wagner, Marilyn Schuman Jorns, F Scott Mathews 
Volume 9, Issue 3, Pages (March 2001)
Volume 90, Issue 1, Pages (July 1997)
Volume 9, Issue 8, Pages (August 2001)
Daniel Peisach, Patricia Gee, Claudia Kent, Zhaohui Xu  Structure 
Volume 8, Issue 6, Pages (June 2000)
Edith Schlagenhauf, Robert Etges, Peter Metcalf  Structure 
Volume 11, Issue 10, Pages (October 2004)
Crystal structure of the ternary complex of 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea with NADPH and an active-site inhibitor  Arnold.
Yi Mo, Benjamin Vaessen, Karen Johnston, Ronen Marmorstein 
Volume 111, Issue 1, Pages (October 2002)
Glutamate mutase from Clostridium cochlearium: the structure of a coenzyme B12- dependent enzyme provides new mechanistic insights  R Reitzer, K Gruber,
Volume 9, Issue 12, Pages (December 2001)
The structure of the C-terminal domain of methionine synthase: presenting S- adenosylmethionine for reductive methylation of B12  Melinda M Dixon, Sha.
Silvia Onesti, Andrew D Miller, Peter Brick  Structure 
Crystal Structure of 4-Amino-5-Hydroxymethyl-2- Methylpyrimidine Phosphate Kinase from Salmonella typhimurium at 2.3 Å Resolution  Gong Cheng, Eric M.
Volume 7, Issue 8, Pages (August 1999)
Volume 7, Issue 9, Pages (September 1999)
The manifold of vitamin B6 dependent enzymes
Structure of a water soluble fragment of the ‘Rieske’ iron–sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing.
Structure of Escherichia coli Ribose-5-Phosphate Isomerase
Volume 5, Issue 10, Pages (October 1997)
The crystal structure of the flavin containing enzyme dihydroorotate dehydrogenase A from Lactococcus lactis  Paul Rowland, Finn S Nielsen, Kaj Frank.
The Structure of JNK3 in Complex with Small Molecule Inhibitors
Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP+ molecule and provides insights into enzyme deficiency  Shannon.
Volume 20, Issue 1, Pages (January 2012)
Volume 6, Issue 8, Pages (August 1998)
Volume 8, Issue 5, Pages (May 2000)
Volume 13, Issue 5, Pages (May 2005)
Volume 10, Issue 4, Pages (April 2003)
Volume 6, Issue 8, Pages (August 1998)
Volume 9, Issue 11, Pages (November 2001)
Structures of Trihydroxynaphthalene Reductase-Fungicide Complexes
Volume 10, Issue 9, Pages (May 2000)
Volume 126, Issue 4, Pages (August 2006)
Structural and Biochemical Analysis of the Obg GTP Binding Protein
Volume 4, Issue 6, Pages (June 1996)
Presentation transcript:

Crystal Structure of Saccharopine Reductase from Magnaporthe grisea, an Enzyme of the α-Aminoadipate Pathway of Lysine Biosynthesis  Eva Johansson, James J. Steffens, Ylva Lindqvist, Gunter Schneider  Structure  Volume 8, Issue 10, Pages 1037-1047 (October 2000) DOI: 10.1016/S0969-2126(00)00512-8

Figure 1 Overview of the α-Aminoadipate Pathway of Lysine Biosynthesis The reaction catalysed by saccharopine reductase is shown boxed Structure 2000 8, 1037-1047DOI: (10.1016/S0969-2126(00)00512-8)

Figure 2 The Fold of Saccharopine Reductase Domain I is shown in blue, domain II in red and domain III in green. Ribbon views of (a) the domains and (b) the subunit. The bound NADPH and the product are shown in ball-and-stick representation. (c) A topology diagram of saccharopine reductase Structure 2000 8, 1037-1047DOI: (10.1016/S0969-2126(00)00512-8)

Figure 3 Conformational Differences in the Observed Crystal Structures of Saccharopine Reductase Superposition of the Cα traces of apo saccharopine reductase (space group C2; magenta), apo saccharopine reductase (space group C2221; cyan), and the ternary complex (space group P21; yellow). The arrow points to areas of local structural differences in domain II Structure 2000 8, 1037-1047DOI: (10.1016/S0969-2126(00)00512-8)

Figure 4 Active Site of Saccharopine Reductase (a) Difference electron densities for the bound ligands, NADPH, and saccharopine, in the ternary complex with saccharopine reductase. The 2Fo–Fc difference electron-density map is contoured at 1.2σ. (b) Stereoview of the active site of saccharopine reductase. Hydrogen bonds are indicated by dashed lines Structure 2000 8, 1037-1047DOI: (10.1016/S0969-2126(00)00512-8)

Figure 5 Amino Acid Sequence of Saccharopine Reductase from M. grisea Secondary-structure elements are marked as arrows (β strands) and filled rectangles (helices). The secondary-structure elements are colour-coded: domain I, blue; domain II, red; and domain III, green. Residues completely conserved in M. grisea, Saccharomyces cerevisiae, Schizoaccharomyces pombe, Brassica napus (fragment), Arabidopsis thaliana, Caenorhabditis elegans, Homo sapiens, and Mus musculus are shown in red. Residues only conserved in the fungal enzymes are shown in blue Structure 2000 8, 1037-1047DOI: (10.1016/S0969-2126(00)00512-8)

Figure 6 Interactions of the Bound Ligands with Protein Atoms at the Active Site of Saccharopine Reductase Dotted lines indicate hydrogen bonds, and red rays show hydrophobic interactions. Invariant residues are marked by an asterisk. (a) The NADPH-binding site and (b) the saccharopine-binding site. Atoms are shown in standard colours Structure 2000 8, 1037-1047DOI: (10.1016/S0969-2126(00)00512-8)

Figure 7 Proposed Mechanism of the Reaction Catalysed by Saccharopine Reductase Structure 2000 8, 1037-1047DOI: (10.1016/S0969-2126(00)00512-8)