Volume 26, Issue 4, Pages e4 (April 2018)

Slides:



Advertisements
Similar presentations
Volume 25, Issue 4, Pages e3 (April 2017)
Advertisements

Volume 20, Issue 10, Pages (October 2012)
Identification of Structural Mechanisms of HIV-1 Protease Specificity Using Computational Peptide Docking: Implications for Drug Resistance  Sidhartha.
Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
Volume 25, Issue 4, Pages e3 (April 2017)
Volume 25, Issue 8, Pages e4 (August 2017)
Volume 124, Issue 1, Pages (January 2006)
Volume 21, Issue 7, Pages (July 2013)
Volume 13, Issue 12, Pages (December 2005)
Volume 14, Issue 12, Pages (December 2006)
Volume 63, Issue 6, Pages (September 2016)
Xiaojing He, Yi-Chun Kuo, Tyler J. Rosche, Xuewu Zhang  Structure 
Volume 24, Issue 11, Pages (November 2016)
Volume 24, Issue 8, Pages (August 2016)
Volume 25, Issue 5, Pages e3 (May 2017)
Volume 22, Issue 1, Pages (January 2005)
Volume 15, Issue 1, Pages (January 2007)
Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity
Potent and Selective Peptidyl Boronic Acid Inhibitors of the Serine Protease Prostate- Specific Antigen  Aaron M. LeBeau, Pratap Singh, John T. Isaacs,
Volume 21, Issue 10, Pages (October 2013)
Volume 16, Issue 10, Pages (October 2008)
Volume 20, Issue 10, Pages (October 2012)
Volume 19, Issue 7, Pages (July 2011)
A Conformational Switch in the CRIB-PDZ Module of Par-6
Volume 22, Issue 9, Pages (September 2014)
Volume 124, Issue 5, Pages (March 2006)
Volume 18, Issue 8, Pages (August 2010)
Volume 25, Issue 5, Pages e3 (May 2017)
Volume 17, Issue 6, Pages (June 2009)
Volume 26, Issue 2, Pages e4 (February 2018)
Volume 15, Issue 1, Pages 5-11 (January 2008)
Volume 14, Issue 5, Pages (May 2006)
Volume 33, Issue 2, Pages (January 2009)
The Structure of the Tiam1 PDZ Domain/ Phospho-Syndecan1 Complex Reveals a Ligand Conformation that Modulates Protein Dynamics  Xu Liu, Tyson R. Shepherd,
Jiao Yang, Melesse Nune, Yinong Zong, Lei Zhou, Qinglian Liu  Structure 
Volume 25, Issue 8, Pages e4 (August 2017)
Structure of the Catalytic Region of DNA Ligase IV in Complex with an Artemis Fragment Sheds Light on Double-Strand Break Repair  Takashi Ochi, Xiaolong.
Volume 23, Issue 4, Pages (April 2015)
Volume 25, Issue 11, Pages e4 (November 2017)
Volume 17, Issue 12, Pages (December 2009)
Volume 23, Issue 1, Pages (January 2015)
Volume 13, Issue 12, Pages (December 2005)
Volume 16, Issue 6, Pages (June 2009)
Volume 25, Issue 9, Pages e3 (September 2017)
Volume 26, Issue 1, Pages e7 (January 2018)
Recognition of Histone H3K14 Acylation by MORF
Volume 22, Issue 2, Pages (February 2014)
Volume 25, Issue 7, Pages e4 (July 2017)
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
Volume 23, Issue 6, Pages (June 2015)
A Role for Intersubunit Interactions in Maintaining SAGA Deubiquitinating Module Structure and Activity  Nadine L. Samara, Alison E. Ringel, Cynthia Wolberger 
Volume 24, Issue 12, Pages e11 (December 2017)
Volume 14, Issue 4, Pages (April 2006)
Shiqian Qi, Do Jin Kim, Goran Stjepanovic, James H. Hurley  Structure 
Volume 24, Issue 7, Pages (July 2016)
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Volume 23, Issue 12, Pages (December 2015)
Structural Insight into BLM Recognition by TopBP1
Volume 22, Issue 4, Pages (April 2014)
Jue Wang, Jia-Wei Wu, Zhi-Xin Wang  Structure 
Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile  Magdalena Schacherl,
Volume 13, Issue 4, Pages (April 2005)
Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance
Structure of Human Cytosolic Phenylalanyl-tRNA Synthetase: Evidence for Kingdom- Specific Design of the Active Sites and tRNA Binding Patterns  Igal Finarov,
Structural and Thermodynamic Basis for Enhanced DNA Binding by a Promiscuous Mutant EcoRI Endonuclease  Paul J. Sapienza, John M. Rosenberg, Linda Jen-Jacobson 
Annia Rodríguez-Hernández, John J. Perona  Structure 
Yogesh K. Gupta, Deepak T. Nair, Robin P. Wharton, Aneel K. Aggarwal 
Volume 21, Issue 6, Pages (June 2013)
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Volume 14, Issue 8, Pages (August 2006)
Presentation transcript:

Volume 26, Issue 4, Pages 572-579.e4 (April 2018) Unique Substrate Specificity of SplE Serine Protease from Staphylococcus aureus  Natalia Stach, Magdalena Kalinska, Michal Zdzalik, Radoslaw Kitel, Abdulkarim Karim, Karol Serwin, Wioletta Rut, Katrine Larsen, Abeer Jabaiah, Magdalena Firlej, Benedykt Wladyka, Patrick Daugherty, Henning Stennicke, Marcin Drag, Jan Potempa, Grzegorz Dubin  Structure  Volume 26, Issue 4, Pages 572-579.e4 (April 2018) DOI: 10.1016/j.str.2018.02.008 Copyright © 2018 Elsevier Ltd Terms and Conditions

Structure 2018 26, 572-579.e4DOI: (10.1016/j.str.2018.02.008) Copyright © 2018 Elsevier Ltd Terms and Conditions

Figure 1 Substrate Specificity of SplE at the P1 Subsite Activity of SplE was determined toward a library of synthetic fluorogenic peptide substrates of a general structure (Ac-X4-X3-X2-P1-Acc) consisting of 18 sublibraries, each having a fixed amino acid residue at the P1 position (one letter code, horizontal axis) and an equimolar mixture of those residues at other positions. Vertical bars indicate the activity of the enzyme against each tested sublibrary normalized to the most active sublibrary. Error bars indicate standard deviation (SD). Structure 2018 26, 572-579.e4DOI: (10.1016/j.str.2018.02.008) Copyright © 2018 Elsevier Ltd Terms and Conditions

Figure 2 Overall Fold of SplE and the Details of the S1 Specificity Pocket The overall folds of SplE (blue) and SplB (gray) are compared (left). S1 subsite architecture is highlighted (right). Catalytic triad residues are shown in yellow. Residues of significance in S1 specificity determination are shown in stick model form and colored according to the compared proteases. See also Figure S1. Structure 2018 26, 572-579.e4DOI: (10.1016/j.str.2018.02.008) Copyright © 2018 Elsevier Ltd Terms and Conditions

Figure 3 Directed Modification of P1 Substrate Specificity of SplB and SplE Activity of respective Spl protease and its mutants was tested against a fluorescent substrate library of a general structure indicated at the top of the figure. In each panel, the x axis represents amino acids at the P1 position within a particular library using the standard one-letter code, and the y axis shows the relative hydrolysis rate expressed as relative fluorescence units per second determined at 1 μM of enzyme. Note the P1 specificity changes associated with mutations in SplB and a significant overall drop in activity of G173S and double SplE mutants. Error bars indicate standard deviation (SD). See also Figure S2. Structure 2018 26, 572-579.e4DOI: (10.1016/j.str.2018.02.008) Copyright © 2018 Elsevier Ltd Terms and Conditions

Figure 4 Putative Interactions Guiding Substrate Recognition by SplE Binding of a consensus substrate was modeled at the active site of SplE. The substrate is shown in green, and the key interacting residues within SplE (gray surface) are shown in yellow. Hydrogen bonds are depicted as dotted lines. See also Table S1. Structure 2018 26, 572-579.e4DOI: (10.1016/j.str.2018.02.008) Copyright © 2018 Elsevier Ltd Terms and Conditions