Volume 18, Issue 2, Pages (February 2010)

Slides:



Advertisements
Similar presentations
R.Ian Menz, John E. Walker, Andrew G.W. Leslie  Cell 
Advertisements

Crystal Structure of the Tandem Phosphatase Domains of RPTP LAR
Structural Basis for the Highly Selective Inhibition of MMP-13
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 23, Issue 7, Pages (July 2015)
Volume 21, Issue 5, Pages (May 2013)
Identification of Phe187 as a Crucial Dimerization Determinant Facilitates Crystallization of a Monomeric Retroviral Integrase Core Domain  Meytal Galilee,
Transformation Efficiency of RasQ61 Mutants Linked to Structural Features of the Switch Regions in the Presence of Raf  Greg Buhrman, Glenna Wink, Carla.
Volume 20, Issue 12, Pages (December 2012)
Volume 14, Issue 12, Pages (December 2006)
Volume 12, Issue 7, Pages (July 2004)
Volume 16, Issue 10, Pages (October 2008)
Volume 16, Issue 11, Pages (November 2008)
Allosteric Effects of the Oncogenic RasQ61L Mutant on Raf-RBD
Volume 23, Issue 8, Pages (August 2015)
Volume 20, Issue 6, Pages (June 2012)
David Pulido, Sadaf-Ahmahni Hussain, Erhard Hohenester  Structure 
Volume 20, Issue 5, Pages (May 2012)
Volume 28, Issue 1, Pages (October 2007)
Volume 26, Issue 3, Pages e3 (March 2018)
Structural Basis of DNA Loop Recognition by Endonuclease V
Crystal Structures of Ral-GppNHp and Ral-GDP Reveal Two Binding Sites that Are Also Present in Ras and Rap  Nathan I. Nicely, Justin Kosak, Vesna de Serrano,
Solution and Crystal Structures of a Sugar Binding Site Mutant of Cyanovirin-N: No Evidence of Domain Swapping  Elena Matei, William Furey, Angela M.
Elif Eren, Megan Murphy, Jon Goguen, Bert van den Berg  Structure 
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Seisuke Yamashita, Kozo Tomita  Structure 
Volume 12, Issue 11, Pages (November 2004)
The Monomeric dUTPase from Epstein-Barr Virus Mimics Trimeric dUTPases
Volume 23, Issue 12, Pages (December 2015)
Volume 90, Issue 1, Pages (July 1997)
Crystal Structure of the TAO2 Kinase Domain
The Crystal Structure of the Costimulatory OX40-OX40L Complex
Structural Roles of Monovalent Cations in the HDV Ribozyme
Daniel Peisach, Patricia Gee, Claudia Kent, Zhaohui Xu  Structure 
Elizabeth J. Little, Andrea C. Babic, Nancy C. Horton  Structure 
Volume 14, Issue 5, Pages (May 2006)
Volume 56, Issue 6, Pages (December 2007)
Volume 23, Issue 4, Pages (April 2015)
Volume 3, Issue 5, Pages (May 1999)
Volume 21, Issue 8, Pages (August 2013)
Partial Agonists Activate PPARγ Using a Helix 12 Independent Mechanism
Structural Basis for the Highly Selective Inhibition of MMP-13
Crystal Structure of a Phosphoinositide Phosphatase, MTMR2
Volume 17, Issue 10, Pages (October 2009)
Qun Liu, Qingqiu Huang, Xin Gen Lei, Quan Hao  Structure 
Volume 23, Issue 6, Pages (June 2015)
Tianjun Zhou, Liguang Sun, John Humphreys, Elizabeth J. Goldsmith 
A Role for Intersubunit Interactions in Maintaining SAGA Deubiquitinating Module Structure and Activity  Nadine L. Samara, Alison E. Ringel, Cynthia Wolberger 
Volume 14, Issue 12, Pages (December 2006)
Volume 26, Issue 3, Pages e4 (March 2018)
DNA Synthesis across an Abasic Lesion by Human DNA Polymerase ι
Volume 21, Issue 11, Pages (November 2013)
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Gregory J. Miller, James H. Hurley  Molecular Cell 
Crystal Structure of the Carboxyltransferase Domain of Acetyl-Coenzyme A Carboxylase in Complex with CP   Hailong Zhang, Benjamin Tweel, Jiang Li,
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Jue Wang, Jia-Wei Wu, Zhi-Xin Wang  Structure 
Michael M. Brent, Ruchi Anand, Ronen Marmorstein  Structure 
Volume 20, Issue 1, Pages (January 2012)
Volume 27, Issue 1, Pages (July 2007)
Volume 6, Issue 3, Pages (February 2014)
Structural and Thermodynamic Basis for Enhanced DNA Binding by a Promiscuous Mutant EcoRI Endonuclease  Paul J. Sapienza, John M. Rosenberg, Linda Jen-Jacobson 
Petra Hänzelmann, Hermann Schindelin  Structure 
The Crystal Structure of an Unusual Processivity Factor, Herpes Simplex Virus UL42, Bound to the C Terminus of Its Cognate Polymerase  Harmon J Zuccola,
Volume 16, Issue 7, Pages (July 2008)
Volume 20, Issue 5, Pages (May 2012)
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Structural Basis for Apelin Control of the Human Apelin Receptor
Volume 14, Issue 8, Pages (August 2006)
Presentation transcript:

Volume 18, Issue 2, Pages 228-238 (February 2010) Crystal Structure of a Legionella pneumophila Ecto -Triphosphate Diphosphohydrolase, A Structural and Functional Homolog of the Eukaryotic NTPDases  Julian P. Vivian, Patrice Riedmaier, Honghua Ge, Jérôme Le Nours, Fiona M. Sansom, Matthew C.J. Wilce, Emma Byres, Manisha Dias, Jason W. Schmidberger, Peter J. Cowan, Anthony J.F. d'Apice, Elizabeth L. Hartland, Jamie Rossjohn, Travis Beddoe  Structure  Volume 18, Issue 2, Pages 228-238 (February 2010) DOI: 10.1016/j.str.2009.11.014 Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 1 Crystal Structure of the apo Lp1NTPDase (A) Overall architecture of the X-ray structure of Lp1NTPDase. Domain 1 and domain 2 are colored in orange and gray, respectively. The two-disulfide bonds are colored in magenta. (B) The ACR regions are highlighted on the Lp1NTPDase structure with AMPPNP shown in stick form. The ACR1, ACR2, ACR3, ACR4, and ACR5 are colored in cyan, pink, green, blue, and light blue, respectively. Structure 2010 18, 228-238DOI: (10.1016/j.str.2009.11.014) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 2 Comparison of Lp1NTPDase Structure with RnNTPDase2 Structure (A) Structure-based sequence alignment with identical residues shaded in black and conserved residues shaded in gray. (B) Superposition of the apo Lp1NTPDase X-ray structure (pale green) and the Rattus Norvegicus RnNTPase2 (PDB code: 3cj1) (orange) (see Experimental Procedures). The loop shown red is proposed to interact with the membrane. Structure 2010 18, 228-238DOI: (10.1016/j.str.2009.11.014) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 3 Close-up View of the ATP Binding Site of Lp1NTPDase Electron density maps shown are Fo - Fc simulated annealing omit maps contoured at 3σ. AMPPNP-mediated hydrogen bonds with Lp1NTPDase are shown as black dashed lines. The water-mediated hydrogen bonds are shown as magenta dashed lines with water molecules shown in orange. Structure 2010 18, 228-238DOI: (10.1016/j.str.2009.11.014) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 4 ARL 67156 Binding Site of Lp1NTPDase (A) Structural formula of subtype NTPDase inhibitor ARL 67156 (Crack et al., 1995). (B) ARL 67156-mediated hydrogen bonds with Lp1NTPDase are shown as black dashed lines. The water-mediated hydrogen bonds are shown as magenta dashed lines with water molecules shown in orange. The bromine ions are shown in magenta. Electron density maps shown are Fo - Fc simulated annealing omit maps contoured at 3σ. (C) Superposition of ARL 67156 (yellow) with the bromine ions are shown in green; Lp1NTPDase structure (blue) onto AMPPNP (magenta)-Lp1NTPDase structure. Structure 2010 18, 228-238DOI: (10.1016/j.str.2009.11.014) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 5 Active Site Comparison of Lp1NTPDase with RnNTPDase2 Superposition of the AMPPNP-Lp1NTPDase structure (gray) and the RnNTPDase2 (light green) using the C-alpha coordinates of all residues. (A) The catalytic base E165 of RnNTPDase2 (light green) is hydrogen bonded (dashed lines) to the putative nucleophilic water that attacks γ-phosphate of AMPPNP (blue). The nucleophilic water also forms water-mediated hydrogen bonding with Q208 of RnNTPDase2. The conserved catalytic residues in Lp1NTPDase are shown in gray, while AMPPNP is shown in magenta. (B) Lp1NTPDase ACR1 residues (R56, T53, and S52) mediate binding with the γ-phosphate of ARL 67156 (magenta), while ACR4 residues (D186, G189, and A190) mediate the binding with the β- and α-phosphates. (C) RnNTPDase2 ACR 1 region (H50, S49, S48) mediates the binding of the β-phosphate, while ACR 4 (G204, A205, S206) binds to the γ-phosphate. (D) The calcium binding site of RnNTPDase2, showing calcium ion (blue sphere) being coordinated by water-mediated hydrogen bonds (magenta dashed lines) via residues W346, D49, D201, and the γ- and β-phosphate of AMPPNP (blue). The conserved residues of Lp1NTPDase (gray) are superimposed onto the RnNTPDase2 structure with AMPPNP shown in magenta. Structure 2010 18, 228-238DOI: (10.1016/j.str.2009.11.014) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 6 Relative Enzyme Activity of Lp1NTPDase Mutants (A) Residues in Lp1NTPDase that were mutated for analysis of catalytic activity. AMPPNP is shown in magenta. (B) Relative activity of Lp1NTPDase and various mutants for ATP and ADP. The results are expressed as percentage of the relative activity of wild-type (WT) and are the mean ± SD of three experiments. (C) Effect on bacterial replication in THP-1 macrophages. Results are expressed as the log10cfu of viable bacteria present in the extracellular medium and associated cells at specific time points after inoculation, mean ± SD of least three independent experiments from duplicate wells. Structure 2010 18, 228-238DOI: (10.1016/j.str.2009.11.014) Copyright © 2010 Elsevier Ltd Terms and Conditions