Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile  A. Asanbaeva, Ph.D.,

Slides:



Advertisements
Similar presentations
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Advertisements

J.F. Nishimuta, M.E. Levenston  Osteoarthritis and Cartilage 
BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium- derived progenitor cells cultured in three-dimensional alginate hydrogel 
Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates.
IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage  P. Behrendt, A. Preusse-Prange,
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3  E.G. Lima, M.Phil., M.S., L. Bian,
Infrapatellar fat pad aggravates degeneration of acute traumatized cartilage: a possible role for interleukin-6  J. He, Y. Jiang, P.G. Alexander, V. Ulici,
M. Z. Ilic, Ph. D. , B. Martinac, Ph. D. , T. Samiric, Ph. D. , C. J
T.A. Schmidt, Ph.D., R.L. Sah, M.D., Sc.D. 
MMP and non-MMP-mediated release of aggrecan and its fragments from articular cartilage: a comparative study of three different aggrecan and glycosaminoglycan.
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
B. Mohanraj, G.R. Meloni, R.L. Mauck, G.R. Dodge 
Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs  B.D. Elder,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs  M.J. Farrell, J.I. Shin, L.J.
A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair  M.B. Schmidt, Ph.D.,
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
S. E. Cisewski, L. Zhang, J. Kuo, G. J. Wright, Y. Wu, M. J. Kern, H
M. M. Temple, Ph. D. , W. C. Bae, Ph. D. , M. Q. Chen, M. S. , M
Proteoglycan synthesis in bovine articular cartilage explants exposed to different low- frequency low-energy pulsed electromagnetic fields  M. De Mattei,
W. C. Bae, Ph. D. , V. W. Wong, B. S. , J. Hwang, M. S. , J. M
Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral.
M.L. Hall, D.A. Krawczak, N.K. Simha, J.L. Lewis 
Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression  J.H. Lai, M.E. Levenston  Osteoarthritis and Cartilage 
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 
P.A. Torzilli, M. Bhargava, S. Park, C.T.C. Chen 
Glucosamine reduces anabolic as well as catabolic processes in bovine chondrocytes cultured in alginate  E.J. Uitterlinden, M.D., H. Jahr, Ph.D., J.L.M.
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro  E. Tognana, Ph.D., F. Chen, M.D., R.F. Padera,
A.W. Palmer, C.G. Wilson, E.J. Baum, M.E. Levenston 
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Osteogenic protein-1 promotes the formation of tissue-engineered cartilage using the alginate-recovered-chondrocyte method  Dr. K. Masuda, M.D., B.E.
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Resistin is elevated following traumatic joint injury and causes matrix degradation and release of inflammatory cytokines from articular cartilage in.
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van.
L. C. Davies, B. Sc. , Ph. D. , E. J. Blain, B. Sc. , Ph. D. , B
Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion 
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFβ2 and FGF2  Y.M. Jenniskens, M.Sc., W. Koevoet, B.Sc., A.C.W. de.
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
M. Hufeland, M. Schünke, A.J. Grodzinsky, J. Imgenberg, B. Kurz 
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Synergistic effect of chondroitin sulfate and cyclic pressure on biochemical and morphological properties of chondrocytes from articular cartilage  G.
M. Durigova, M.Sc., P.J. Roughley, Ph.D., J.S. Mort, Ph.D. 
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
Effect of a glucosamine derivative on impact-induced chondrocyte apoptosis in vitro. A preliminary report  C.A.M. Huser, Ph.D., M.E. Davies, Ph.D.  Osteoarthritis.
Tissue engineering of stratified articular cartilage from chondrocyte subpopulations  T.J. Klein, M.S., B.L. Schumacher, B.S., T.A. Schmidt, M.S., K.W.
Structure of pericellular matrix around agarose-embedded chondrocytes
Chondroitin sulfate modulation of matrix and inflammatory gene expression in IL-1β- stimulated chondrocytes – study in hypoxic alginate bead cultures 
Y. M. Bastiaansen-Jenniskens, M. Sc. , W. Koevoet, B. Sc. , A. C. W
Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1α, IGF-I, and TGF-β1  T.A. Schmidt, Ph.D., N.S. Gastelum, B.S., E.H. Han, M.S.,
Analysis of ADAMTS4 and MT4-MMP indicates that both are involved in aggrecanolysis in interleukin-1-treated bovine cartilage  P. Patwari, G. Gao, J.H.
A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage  Dr S.D. Waldman, Ph.D.,
Tissue engineering with meniscus cells derived from surgical debris
R. H. J. Das, M. Sc. , H. Jahr, Ph. D. , J. A. N. Verhaar, M. D. , Ph
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
A.R. Tan, E.Y. Dong, G.A. Ateshian, C.T. Hung 
J.F. Nishimuta, M.E. Levenston  Osteoarthritis and Cartilage 
Cartilage degeneration in different human joints
Inhibition of adenosine kinase attenuates interleukin-1- and lipopolysaccharide-induced alterations in articular cartilage metabolism  Raina Petrov, B.S.,
Osteoarthritis year in review 2016: mechanics
Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage 
Presentation transcript:

Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile  A. Asanbaeva, Ph.D., K. Masuda, M.D., E.J.-M.A. Thonar, Ph.D., S.M. Klisch, Ph.D., R.L. Sah, M.D., Sc.D.  Osteoarthritis and Cartilage  Volume 16, Issue 1, Pages 1-11 (January 2008) DOI: 10.1016/j.joca.2007.05.019 Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Effect of experimental conditions on general indices of in vitro growth of calf articular cartilage explants from the superficial (S) and middle (M) layers. Blocks were analyzed on day 0 (d0), or incubated for 13 days (d13) in medium (20% FBS) or medium supplemented with 0.1mM BAPN. (A) Thickness, (B) change in wet weight, and (C) percent water of cartilage blocks. The dotted line separates explants analyzed on day 0. * Indicates P<0.05 vs d0, # indicates P<0.05 vs d13 for a corresponding layer. Data are mean±s.e.m., n=10–20 blocks from five animals. Osteoarthritis and Cartilage 2008 16, 1-11DOI: (10.1016/j.joca.2007.05.019) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Effect of experimental conditions on general indices of in vitro growth of calf articular cartilage explants from the S and M layers. (A, E) Cells, (B, F) GAG, (C, G) COL, and PYR crosslink (D, H) normalized to initial wet weight (WWi) to represent constituent content (A–D) and to final wet weight (WWf) to represent constituent concentration (E–H). (I) Molar ratio of PYR to COL. The dotted line separates explants analyzed on day 0, where WWf=WWi. * Indicates P<0.05 vs d0, # indicates P<0.05 vs d13 for a corresponding layer, while indicates where statistical analysis was performed on both layers together. Data are mean±s.e.m., n=10–20 blocks from five animals. Osteoarthritis and Cartilage 2008 16, 1-11DOI: (10.1016/j.joca.2007.05.019) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Effect of experimental conditions on sulfate and proline incorporation and HYPRO formation of calf articular cartilage explants from the S and M layers. Content of (A) sulfate and (B) proline incorporation, and (C) HYPRO formation in the tissue (solid) and released into the medium, where applicable (striped). Total sulfate incorporation and HYPRO formation is represented by the overall bar height and upward error bar. # Indicates P<0.05 vs d13 for a corresponding layer, while indicates where statistical analysis was performed on both layers together. Data are mean±s.e.m., n=10–20 blocks from five animals. Osteoarthritis and Cartilage 2008 16, 1-11DOI: (10.1016/j.joca.2007.05.019) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Effect of experimental conditions on growth associated changes in structural and material tensile mechanical behavior of calf articular cartilage explants from the S (A and C) and M (B and D) layers. Average load–displacement (A–B) and stress–strain (C–D) profiles preceding the failure stress of the weakest sample within a group are displayed for blocks that were analyzed on day 0 (d0) (●) and on day 13 (d13) after incubation in medium (▴) or medium supplemented with 0.1mM BAPN (■). Values are the mean±s.e.m. at selected points, n=10–20 blocks from five animals. Osteoarthritis and Cartilage 2008 16, 1-11DOI: (10.1016/j.joca.2007.05.019) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Effect of experimental conditions on structural and material tensile mechanical properties of calf articular cartilage explants from the S and M layers. Structural properties: (A) Ramp modulus, and (B) strength. Material properties: (C) ramp modulus, (D) strength, and (E) failure strain. The dotted line separates explants analyzed on day 0. * Indicates P<0.05 vs d0, # indicates P<0.05 vs d13 for a corresponding layer. Data are mean±s.e.m., n=10–20 blocks from five animals. Osteoarthritis and Cartilage 2008 16, 1-11DOI: (10.1016/j.joca.2007.05.019) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Schematic of metabolism of proteoglycan and COL network components, leading to different types of cartilage growth. Initial state (A) with the major components of the solid extracellular matrix. Stimulation of anabolism with 20% FBS leads to (B) expansive growth or (C) accelerated growth when COL crosslink formation is inhibited with BAPN. Osteoarthritis and Cartilage 2008 16, 1-11DOI: (10.1016/j.joca.2007.05.019) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions