Volume 19, Issue 3, Pages (September 2016)

Slides:



Advertisements
Similar presentations
Volume 17, Issue 2, Pages (August 2015)
Advertisements

Volume 13, Issue 2, Pages (August 2013)
Volume 16, Issue 3, Pages (March 2015)
Volume 9, Issue 2, Pages (August 2017)
Volume 15, Issue 8, Pages (May 2016)
Human Induced Pluripotent Stem Cells: Now Open to Discovery
Volume 21, Issue 3, Pages e8 (September 2017)
Jurian Schuijers, Laurens G. van der Flier, Johan van Es, Hans Clevers 
Volume 12, Issue 10, Pages (September 2015)
Volume 47, Issue 2, Pages (July 2012)
Volume 20, Issue 6, Pages e6 (June 2017)
Volume 25, Issue 4, Pages (April 2014)
Volume 6, Issue 5, Pages (May 2016)
Human Induced Pluripotent Stem Cells: Now Open to Discovery
Correction of Recessive Dystrophic Epidermolysis Bullosa by Transposon-Mediated Integration of COL7A1 in Transplantable Patient-Derived Primary Keratinocytes 
Jiping Yue, Xuewen Gou, Yuanyuan Li, Barton Wicksteed, Xiaoyang Wu 
Volume 5, Issue 3, Pages (September 2015)
Angela Nakauka-Ddamba, Christopher J. Lengner  Cell Stem Cell 
Ciara Metcalfe, Noelyn M. Kljavin, Ryan Ybarra, Frederic J. de Sauvage 
Volume 22, Issue 10, Pages (October 2014)
Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury  Dong Zhou, Roderick.
Volume 21, Issue 6, Pages e4 (June 2017)
Takatoshi Kiba, Kentaro Takei, Mikiko Kojima, Hitoshi Sakakibara 
Wenqian Hu, Bingbing Yuan, Harvey F. Lodish  Developmental Cell 
Volume 13, Issue 6, Pages (December 2013)
Volume 11, Issue 1, Pages (July 2018)
Inhibition of KLF4 by Statins Reverses Adriamycin-Induced Metastasis and Cancer Stemness in Osteosarcoma Cells  Yangling Li, Miao Xian, Bo Yang, Meidan.
Volume 13, Issue 2, Pages (August 2013)
Volume 17, Issue 2, Pages (August 2015)
Generating Late-Onset Human iPSC-Based Disease Models by Inducing Neuronal Age- Related Phenotypes through Telomerase Manipulation  Elsa Vera, Nazario.
Ryang Hwa Lee, Nara Yoon, John C. Reneau, Darwin J. Prockop 
Volume 22, Issue 2, Pages (February 2014)
Volume 23, Issue 10, Pages (October 2016)
Volume 22, Issue 4, Pages (January 2018)
Volume 10, Issue 5, Pages (May 2012)
Volume 7, Issue 1, Pages (July 2010)
Volume 18, Issue 2, Pages (February 2016)
Jungmook Lyu, Vicky Yamamoto, Wange Lu  Developmental Cell 
Volume 21, Issue 3, Pages e7 (September 2017)
Volume 125, Issue 7, Pages (June 2006)
HBL1 Is a Human Long Noncoding RNA that Modulates Cardiomyocyte Development from Pluripotent Stem Cells by Counteracting MIR1  Juli Liu, Yang Li, Bo Lin,
Volume 17, Issue 2, Pages (August 2015)
Efficient Induction of Syncytiotrophoblast Layer II Cells from Trophoblast Stem Cells by Canonical Wnt Signaling Activation  Dongmei Zhu, Xia Gong, Liyun.
Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells
Volume 14, Issue 5, Pages (November 2011)
TALEN Gene Knockouts Reveal No Requirement for the Conserved Human Shelterin Protein Rap1 in Telomere Protection and Length Regulation  Shaheen Kabir,
Volume 66, Issue 5, Pages e4 (June 2017)
HBL1 Is a Human Long Noncoding RNA that Modulates Cardiomyocyte Development from Pluripotent Stem Cells by Counteracting MIR1  Juli Liu, Yang Li, Bo Lin,
Volume 13, Issue 10, Pages (December 2015)
Volume 5, Issue 3, Pages (September 2015)
Codependent Activators Direct Myoblast-Specific MyoD Transcription
Volume 6, Issue 3, Pages (September 2007)
Volume 49, Issue 2, Pages e5 (August 2018)
Volume 3, Issue 3, Pages (September 2008)
Volume 13, Issue 2, Pages (August 2013)
Volume 16, Issue 1, Pages (January 2015)
Volume 22, Issue 4, Pages (April 2014)
Volume 2, Issue 2, Pages (February 2014)
Volume 12, Issue 4, Pages (July 2015)
Volume 2, Issue 4, Pages (April 2014)
Short Telomeres in ESCs Lead to Unstable Differentiation
Volume 11, Issue 6, Pages (December 2018)
Volume 9, Issue 6, Pages (December 2017)
Volume 12, Issue 1, Pages (January 2019)
Volume 5, Issue 2, Pages (August 2015)
Volume 15, Issue 1, Pages (July 2008)
DICER1 Is Essential for Self-Renewal of Human Embryonic Stem Cells
Volume 12, Issue 2, Pages (February 2013)
Periodic Activation of Wnt/β-Catenin Signaling Enhances Somatic Cell Reprogramming Mediated by Cell Fusion  Frederic Lluis, Elisa Pedone, Stefano Pepe,
Trisomy Correction in Down Syndrome Induced Pluripotent Stem Cells
Presentation transcript:

Volume 19, Issue 3, Pages 397-405 (September 2016) Enhancing a Wnt-Telomere Feedback Loop Restores Intestinal Stem Cell Function in a Human Organotypic Model of Dyskeratosis Congenita  Dong-Hun Woo, Qijun Chen, Ting-Lin B. Yang, M. Rebecca Glineburg, Carla Hoge, Nicolae A. Leu, F. Brad Johnson, Christopher J. Lengner  Cell Stem Cell  Volume 19, Issue 3, Pages 397-405 (September 2016) DOI: 10.1016/j.stem.2016.05.024 Copyright © 2016 Elsevier Inc. Terms and Conditions

Cell Stem Cell 2016 19, 397-405DOI: (10.1016/j.stem.2016.05.024) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 1 Generation of Isogenic DC iPSC Lines (A) Strategy for the correction and introduction of DKC1 mutation. Double-nicking guide RNAs (gRNAs) targeting exon 12 of the DKC1 gene were used with ssDNA donor templates for correction (A to G) and introduction (G to A) of DKC1 mutation. (B) Indel detection by SURVEYOR assay in HEK293 cells, demonstrating cutting only in the presence of both gRNAs (asterisks). (C) DNA sequences showing DKC1 mutation correction and introduction. (D) Immunofluorescence staining of OCT4 and TRA-1-60 in isogenic DC iPSC lines. Scale bar, 50 μm. (E) Telomerase activity in iPSCs measured by quantitative telomeric repeat amplification protocol (qTRAP) (n = 3). ∗p < 0.05, ∗∗p < 0.01. Error bars indicate mean ± SD. Cell Stem Cell 2016 19, 397-405DOI: (10.1016/j.stem.2016.05.024) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 2 Directed Differentiation of Isogenic DC iPSC Lines into Intestinal Organoids (A and B) Representative morphological changes in HIOs during differentiation in intestinal growth medium. (C) Quantification of cavitation at 15 days (n = 3) and budding at day 30; DC (n = 4), corrected (clone 1: n = 7, clone 2: n = 5), wild-type (n = 5), introduced (clone 1: n = 4, clone 2: n = 5). ∗p < 0.05, ∗∗p < 0.01 versus DKC1 HIOs or wild-type HIOs. (D and E) Southern blot analysis for measurement of telomere length of 25-day-old HIOs from isogenic DC iPSC lines. (F) qRT-PCR analysis of expression of Wnt target intestinal stem cell and differentiated intestinal cell genes in 15-day-old HIOs (n = 3). ∗p < 0.05, ∗∗p < 0.01 versus DKC1 HIOs or wild-type HIOs. Error bars indicate mean ± SD. See also Figure S1. Cell Stem Cell 2016 19, 397-405DOI: (10.1016/j.stem.2016.05.024) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 3 Rescue of the DC Phenotype with Wnt Agonism and TRF2 Expression in DC HIOs (A) Representative morphology of DKC1 HIOs 8 days after CHIR treatment. (B) E-CADHERIN staining in DKC1 HIOs with or without 5 μM CHIR. (C) qRT-PCR analysis of Wnt target intestinal stem cell gene expression in DKC1 HIOs after CHIR treatment (n = 3). ∗p < 0.05, ∗∗p < 0.01 versus 0 μM CHIR treatment. (D) Quantification of cavitation and budding in DKC1 HIOs after CHIR treatment (A386T and ΔL37, n = 7 for each group). ∗p < 0.05, ∗∗p < 0.01 versus 0 μM CHIR treatment. (E) Southern blot analysis for telomere length and quantification of mean telomere length in 25-day-old HIOs. (F and G) Representative images for telomere-dysfunction induced foci (TIFs) (F) and quantification of TIFs in HIOs (n = 4 for non-treated, n = 3 for CHIR treated) (G). ∗∗p < 0.01. (H) qRT-PCR analysis of TRF2 expression in DKC1-corrected HIOs, DKC1 HIOs, and CHIR-treated DKC1 HIOs (n = 3 for each group). ∗p < 0.05 versus 0 μM CHIR-treated DKC1 HIOs. (I) qRT-PCR analysis of TRF2 expression in control and TRF2-overexpressed DKC1 HIOs. (J) Representative morphology of control and TRF2-overexpressed DKC1 HIOs at 10 and 25 days. (K) Quantification of cavitation in HIOs at day 10 and budding HIOs at day 25 in control and TRF2-overexpressing DKC1 HIOs (n = 5 for each group). ∗p < 0.05, ∗∗p < 0.01 versus DKC1 HIOs. Error bars indicate mean ± SD. See also Figures S2 and S3. Cell Stem Cell 2016 19, 397-405DOI: (10.1016/j.stem.2016.05.024) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 4 Systemic Lithium Treatment Reverses DC Phenotypes In Vivo (A) Representative morphology of DKC1 and DKC1-corrected HIOs treated with 2 μM CHIR prior to transplantation. (B) Schematic representation of HIO transplantation and lithium feeding (Li). (C) HE staining and E-CADHERIN/Ki67 staining in control mouse small intestine and lithium-fed mouse small intestine. (D) Quantification of Ki67+ cells per crypt and qRT-PCR analysis of Wnt target genes in control mouse small intestine and lithium-fed mouse small intestine. ∗∗p < 0.01 versus control. (E) Kidneys from HIO-grafted mice. Arrows indicate grafted HIOs. (F) H&E in paraffin sections from HIO grafts 4 weeks after transplantation. (G) Staining of E-CADHERIN/Ki67, β-CATENIN, and MUC2 in HIO grafts. Red arrows in insets indicate nuclear-located β-CATENIN. (H) qRT-PCR analysis of Wnt target intestinal stem cell and differentiated intestinal cell gene expression in HIO grafts. ∗p < 0.05, ∗∗p < 0.01 versus DKC1 HIO grafts. Error bars indicate mean ± SD. See also Figure S4. Cell Stem Cell 2016 19, 397-405DOI: (10.1016/j.stem.2016.05.024) Copyright © 2016 Elsevier Inc. Terms and Conditions