CEPC injector beam dynamics

Slides:



Advertisements
Similar presentations
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Advertisements

Page 1 Collider Review Retreat February 24, 2010 Mike Spata February 24, 2010 Collider Review Retreat International Linear Collider.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
S2E optics design and particles tracking for the ILC undulator based e+ source Feng Zhou SLAC ILC e+ source meeting, Beijing, Jan. 31 – Feb. 2, 2007.
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
Electron Model for a 3-10 GeV, NFFAG Proton Driver G H Rees, RAL.
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Status of the CLIC main beam injectors LCWS, Arlington, Texas, October 22 th -26 th, 2012Steffen Döbert, BE-RF Overview of the CLIC main beam injectors.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
CEPC Booster Zhang Chuang, Cui Xiaohao September 11,2015.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
X-band Based FEL proposal
Injection System Update S. Guiducci (LNF) XVII SuperB Workshop La Biodola, Isola d'Elba, May 29 th 5/29/111.
A.Variola Frascati SuperB meeting 1 Injector and positron source scheme. A.Variola, O.Dadoun, F Poirier, R.Chehab, P Lepercq, R.Roux, J.Brossard.
High intensity electron beam and infrastructure Paolo Valente * INFN Roma * On behalf of the BTF and LINAC staff.
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
+-- Collider Front end- Balbekov version
S.M. Polozov & Ko., NRNU MEPhI
Design Study of CEPC Booster and Mainring Lattice
A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac
Positron production rate vs incident electron beam energy for a tungsten target
Positron Source and Injector
Positron Sources of Next generation B-factories (SuperKEKB, SuperB)
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Sara Thorin, MAX IV Laboratory
Positron capture section studies for CLIC Hybrid source - baseline
Design study of CEPC Alternating Magnetic Field Booster
Progress in the Multi-Ion Injector Linac Design
Status of the CLIC main beam injectors
NC Accelerator Structures
Linac possibilities for a Super-B
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
CEPC injector high field S-band accelerating structure design and R&D
A. Plastun¹, B. Mustapha, Z. Conway and P. Ostroumov
Injection facility for Novosibirsk Super Charm Tau Factory
SuperB project. Injection scheme design status
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
CLIC source update CLIC main beam injectors reminder
Progress activities in short bunch compressors
Capture and Transmission of polarized positrons from a Compton Scheme
Electron Source Configuration
Status of the CLIC Injector studies
CEPC Injector Damping Ring
Cui Xiaohao, Bian Tianjian, Zhang Chuang 2017/11/07
CEPC Injector positron source
Pulsed Ion Linac for EIC
LCLS Commissioning Parameters
Design study of CEPC Alternating Magnetic Field Booster
Design study of CEPC Alternating Magnetic Field Booster
MEBT1&2 design study for C-ADS
Design study of CEPC Alternating Magnetic Field Booster
Physics Design on Injector I
CEPC Injector positron source
Design study of CEPC Alternating Magnetic Field Booster
Studies on orbit corrections
CEPC Injector Linac beam dynamics
CEPC injector beam dynamics
J. Seeman Perugia Super-B Meeting June 2009
Injection design of CEPC
CEPC injector beam dynamics
Injector for the Electron Cooler
CDR2 – Injection System Injection system overview (Seeman) (2 pages)
Multi-Ion Injector Linac Design – Progress Summary
Presentation transcript:

CEPC injector beam dynamics Cai MENG , Guoxi PEI, Xiaoping LI, Jingru ZHANG, Shilun PEI, Xiangjian WANG Institute of High Energy Physics, CAS, Beijing

Outline 1 2 3 4 1 Introduction Electron linac 3 Positron linac 4 Summary & Plan 4 5

INTRODUCTION: Main parameters of Injector Symbol Unit Value e- /e+ beam energy Ee-/Ee+ GeV 6 Repetition rate frep Hz 50 e- /e+ bunch population @ 6 GeV Ne-/Ne+   2×1010 nC 3.2 Energy spread (e- /e+ ) σE <1×10-3 Emitance (e- /e+ ) <0.3 mm mrad e- beam energy on Target 4 e- bunch charge on Target 10

INTRODUCTION: Layout of Injector Injection time 1.1 GeV damping ring SLED (SLAC Energy Doubler): 200 MeV~1.1GeV without SLED Accelerating gradient: different section & different accelerating tube Frequency of Booster: 1300 MHz=3.25MHz×400 Frequency of Linac: 2856.75 MHz=3.25MHz×879 3.25 MHz

ELECTRON LINAC: Bunching system and pre-accelerating Pei Shilun Bunching System SHB1:142.8375 MHz SHB:571.35 MHz S-band Buncher (1): 2856.75 MHz Pre-accelerating structure S-band accelerator (3): 2856.75 MHz ~ 24 MV/m

ELECTRON LINAC: Bunching system and pre-accelerating Meng Cai 10 nC Beam distribution @ pre-accelerating section exit

LINAC: Longitudinal Short-Range Wakefield Yokoya's wakefield model for periodic linac structure:

LINAC: Longitudinal Short-Range Wakefield Type Freq. 2a 2b t L Mode MHz mm S-band 2856.75 22.6568 82.6276 5.842 34.9803 2π/3 C-band 5713.5 14.2293 45.606 4.5 19.6764 3π/4

ELECTRON LINAC: High current linac design Beam energy: 200 MeV-> 4GeV 200 MeV->1.1 GeV: 15 MV/m (S-band without SLED) 1.1 GeV-> 4GeV: 27 MV/m (S-band with SLED) Beam charge per bunch: 10 nC RMS beam size < 1 mm, have not considered all Errors

ELECTRON LINAC: Linac simulation with S-band Beam energy: 200 MeV-> 6GeV 200 MeV->1.1 GeV: 15 MV/m (S-band without SLED) 1.1 GeV-> 4 GeV: 27 MV/m (S-band with SLED) 4 GeV-> 6 GeV: 27 MV/m (S-band with SLED) Beam charge per bunch: 3.2 nC Energy spread (<1×10-3) 1.1×10-3 , need more optimization

ELECTRON LINAC: Linac simulation with C-band Beam energy: 200 MeV-> 6GeV 200 MeV->1.1 GeV: 15 MV/m (S-band without SLED) 1.1 GeV-> 4 GeV: 27 MV/m (S-band with SLED) 4 GeV-> 6 GeV: 45 MV/m (C-band with SLED) Beam charge per bunch: 3.2 nC Energy spread (<1×10-3) 2×10-3 , need more optimization Beam length is more critical for energy spread control

POSITRON LINAC: e+ source 考虑产额和能量沉积,选择13mm,如果正电子产额不够,可以选16 mm e- beam energy: 4 GeV Beam rms size:1 mm @ Guass distribution Target:L=13 mm && r=10 mm @ W Deposited energy

POSITRON LINAC: e+ capture and pre-accelerating 200MeV Aperture: 15 mm Average accelerating gradient: 18 MV/m Magnetic field Accelerating tube

POSITRON LINAC: e+ capture and pre-accelerating Beam envelope X (cm) Y (cm) Phase (deg) Beam distribution at pre-accelerating exit ΔW (MeV)

POSITRON LINAC: e+ capture and pre-accelerating Collimator 俘获段后记预加速开始部分需要准直器控制束流损失。

POSITRON LINAC: Linac simulation with S-band Beam energy: 200 MeV-> 6GeV 200 MeV->1.1 GeV: 15 MV/m (S-band without SLED) 1.1 GeV-> 4 GeV: 27 MV/m (S-band with SLED) 4 GeV-> 6 GeV: 27 MV/m (S-band with SLED) Beam charge per bunch: 3.2 nC Emittance: 0.302 mm-mrad Energy spread (<1×10-3) 1.2×10-3 , need more optimization

POSITRON LINAC: Linac simulation with C-band Beam energy: 200 MeV-> 6GeV 200 MeV->1.1 GeV: 15 MV/m (S-band without SLED) 1.1 GeV-> 4 GeV: 27 MV/m (S-band with SLED) 4 GeV-> 6 GeV: 45 MV/m (C-band with SLED) Beam charge per bunch: 3.2 nC Emittance: 0.302 mm-mrad Energy spread (<1×10-3) 2.2×10-3 , need more optimization Beam length is more critical for energy spread control

SUMMARY Finished the preliminary design of electron linac with Wakefield /without errors, preliminary start-to-end simulation: bunching system/pre-accelerating(200 MeV)/high current linac design (10 nC @ 4 GeV)/baseline linac design (3.2 nC @ 6 GeV); Finished the preliminary design of positron linac with Wakefield /without errors, preliminary start-to-end simulation: positron source/positron capture (AMD)/ pre-accelerating ( 200 MeV)/baseline linac design (3.2 nC @ 6GeV); For emittance, electron linac can meet the requirement, positron linac can almost meet the requirement. Considering errors and damping ring for positron, emittance can meet the requirement; For energy spread, both electron linac and positron linac need further optimization to meet requirement; For high energy section (4 GeV~6 GeV), we have studied C-band accelerating tube, beam dynamics almost same as S-band accelerating tube and energy spread control is need more consideration.

Thank you for your attention! Plan Optimization of baseline linac design Beam loss study and control Considering errors of all elements in linac design …… Thank you for your attention!