Chapter 42 Circulation and Gas Exchange

Slides:



Advertisements
Similar presentations
The Circulatory System
Advertisements

Circulatory System Chapter 37. Circulatory System Why do we need one? ◦Diffusion is too slow for large multicellular organisms. They need a transport.
RESPIRATORY AND CIRCULATORY SYSTEMS
Lecture #18 Date _____ Chapter 42 ~ Circulation and Gas Exchange.
Circulation and Gas Exchange
UNIT 9- Circulatory, Respiratory and Endocrine Systems.
 How do simple organisms like jelly fish and flat worms exchange reactants and products of cellular respiration? ◦ Simple animals have a body wall that.
Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings Circulatory and Respiratory Systems.
The Circulatory System
Topic 6.2 The Transport System
Circulation and Respiration. II. Circulatory systems   A. Circulatory system basics 1. Fluid — blood 2. Channels — vessels 3. A pump — the heart.
Ch 46 – Circulatory and Respiratory Systems
Cardiovascular system (CVS)
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Cardiovascular System.

THE CIRCULATORY AND RESPIRATORY SYSTEMS
Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings. BIOLOGY A GUIDE TO THE NATURAL WORLD FOURTH EDITION DAVID KROGH Transport.
08/10/20151 Cardiovascular system (CVS) CVS consists of the heart and a series of blood vessels (arteries, veins and capillaries).
The Circulatory System Chapter 37. Functions of the Circulatory System: Circulatory systems are used by large organisms that cannot rely on diffusion.
Chapter 42 Circulation and Gas Exchange. Circulation system evolution, I Gastrovascular cavity (cnidarians, flatworms) Open circulatory hemolymph (blood.
Chapter 42 ~ Circulation and Gas Exchange
Lecture #18 Date _____ Chapter 42 ~ Circulation and Gas Exchange.
Circulation and Gas Exchange. Why is the circulatory system necessary?  TRANSPORTATION!  Diffusion is not fast enough to transport chemicals throughout.
Components of the Cardiovascular System Generating & Measuring heart impulses.
In the mammalian cardiovascular system, the pulmonary and system circuits operate simultaneously. The two ventricles pump almost in unison While some blood.
The Heart Ch. 46: Circulatory System. What is the heart? A specialized muscle that pumps blood through the body, which transports oxygen, carbon dioxide,
Circulatory and Respiratory Systems P.3 Q Christian Ellwood Alana Eastling Madison Rhodes Baylen Railey.
Circulatory System Open circulatory system –Pump blood into an internal cavity called a hemocoel or sinuses Which bathe tissues with an oxygen and nutrient.
Chapter 42: Internal Transport. Fig Heart Hemolymph in sinuses surrounding organs Heart Interstitial fluid Small branch vessels In each organ Blood.
Why do we need a circulatory system?
CIRCULATION. Types of circulatory systems Diffusion – oxygen and carbon dioxide, based on body shape and size Gastrovascular cavities – distribution of.
Chapter 42. Invertebrate Circulation  Hydras, flatworms, and jellies have gastrovascular cavities (nutrients reach all cells via diffusion or simple.
Chapter 37 THE CIRCULATORY, RESPIRATORY & IMMUNE SYSTEMS **Only responsible for knowing YELLOW and RED terms/concepts** THE CIRCULATORY, RESPIRATORY &
The Circulatory System The Heart, Blood Vessels, Blood Types.
Respiration and Circulation Chapters 22 and 23.
Circulatory System Chapter 35 Test : Thursday April 14 th !!
Warm-Up 1. (Ch. 41) List the locations where each of the 4 macromolecules are chemically digested. 2. (Ch. 41) Where do vertebrates store excess calories?
6.2 The Transport System Readings Pg 216, 2-4.
The circulatory system transports blood and other materials.
Circulation and Respiration
Brief Anatomy of your lungs
Circulation and Gas Exchange
Circulatory System Honors Biology.
Circulation and Gas Exchange
Circulation and Gas Exchange
Gas Exchange: Respiration
google. com/imgres. imgurl= crc. gov
Circulation and Gas Exchange
Circulation and Respiration
Circulatory & Respiratory Systems
Chapters Gas Exchange and Circulation
Chapter 42 – Circulation and Gas Exchange
Circulatory System Function and Parts.
Circulatory Systems
Circulatory System.
6.2 The Blood System.
Circulatory system.
CHAPTER 22 and 23 Respiration and Circulation
6.2 The Blood System.
Circulatory System.
Cardiovascular System
Circulatory Systems.
Ch. 9 : GAS exchange 1. The skin is the major site of gas exchange in
Warm-Up (Ch. 41) List the locations where each of the 4 macromolecules are chemically digested. (Ch. 41) Where do vertebrates store excess calories?
The Respiratory System
CIRCULATION AND GAS EXCHANGE
The Circulatory System
Circulation and Gas Exchange
Circulation and Gas Exchange
Circulatory System Take a look at a skeleton and see how well a heart is protected — open heart surgery takes breaking a body to get to the heart
Presentation transcript:

Chapter 42 Circulation and Gas Exchange

General Properties of Circulatory Systems A circulatory system has A circulatory fluid A set of interconnecting vessels A muscular pump, the heart The circulatory system connects the fluid that surrounds cells with the organs that exchange gases, absorb nutrients, and dispose of wastes Circulatory systems can be open or closed and vary in the number of circuits in the body

Open and Closed Circulatory Systems In insects, other arthropods, and most molluscs, blood bathes the organs directly in an open circulatory system In an open circulatory system, there is no distinction between blood and interstitial fluid, and this general body fluid is called hemolymph

In a closed circulatory system, blood is confined to vessels and is distinct from the interstitial fluid Closed systems are more efficient at transporting circulatory fluids to tissues and cells Annelids, cephalopods, and vertebrates have closed circulatory systems

Organization of Vertebrate Circulatory Systems Humans and other vertebrates have a closed circulatory system called the cardiovascular system The three main types of blood vessels are arteries, veins, and capillaries Blood flow is one way in these vessels

Arteries branch into arterioles and carry blood away from the heart to capillaries Networks of capillaries called capillary beds are the sites of chemical exchange between the blood and interstitial fluid Venules converge into veins and return blood from capillaries to the heart © 2011 Pearson Education, Inc.

Arteries and veins are distinguished by the direction of blood flow, not by O2 content Vertebrate hearts contain two or more chambers Blood enters through an atrium and is pumped out through a ventricle

Mammalian Circulation Blood begins its flow with the right ventricle pumping blood to the lungs In the lungs, the blood loads O2 and unloads CO2 Oxygen-rich blood from the lungs enters the heart at the left atrium and is pumped through the aorta to the body tissues by the left ventricle The aorta provides blood to the heart through the coronary arteries

Blood returns to the heart through the superior vena cava (blood from head, neck, and forelimbs) and inferior vena cava (blood from trunk and hind limbs) The superior vena cava and inferior vena cava flow into the right atrium

Superior vena cava Capillaries of head and forelimbs Pulmonary Figure 42.6 Superior vena cava Capillaries of head and forelimbs Pulmonary artery Pulmonary artery Capillaries of right lung Aorta Capillaries of left lung Pulmonary vein Pulmonary vein Left atrium Figure 42.6 The mammalian cardiovascular system: an overview. Right atrium Left ventricle Right ventricle Aorta Inferior vena cava Capillaries of abdominal organs and hind limbs

Pulmonary artery Aorta Pulmonary artery Right atrium Left atrium Figure 42.7 Pulmonary artery Aorta Pulmonary artery Right atrium Left atrium Semilunar valve Semilunar valve Figure 42.7 The mammalian heart: a closer look. Atrioventricular valve Atrioventricular valve Right ventricle Left ventricle

The heart contracts and relaxes in a rhythmic cycle called the cardiac cycle The contraction, or pumping, phase is called systole The relaxation, or filling, phase is called diastole

The heart rate, also called the pulse, is the number of beats per minute The stroke volume is the amount of blood pumped in a single contraction The cardiac output is the volume of blood pumped into the systemic circulation per minute and depends on both the heart rate and stroke volume

Four valves prevent backflow of blood in the heart The atrioventricular (AV) valves separate each atrium and ventricle The semilunar valves control blood flow to the aorta and the pulmonary artery

The “lub-dup” sound of a heart beat is caused by the recoil of blood against the AV valves (lub) then against the semilunar (dup) valves Backflow of blood through a defective valve causes a heart murmur

Blood Vessel Structure and Function A vessel’s cavity is called the central lumen The epithelial layer that lines blood vessels is called the endothelium The endothelium is smooth and minimizes resistance

Valve Basal lamina Endothelium Endothelium Smooth Smooth muscle muscle Figure 42.10a Valve Basal lamina Endothelium Endothelium Smooth muscle Smooth muscle Connective tissue Capillary Connective tissue Artery Vein Figure 42.10 The structure of blood vessels. Arteriole Venule

Capillaries have thin walls, the endothelium plus its basal lamina, to facilitate the exchange of materials Arteries and veins have an endothelium, smooth muscle, and connective tissue Arteries have thicker walls than veins to accommodate the high pressure of blood pumped from the heart In the thinner-walled veins, blood flows back to the heart mainly as a result of muscle action

Changes in Blood Pressure During the Cardiac Cycle Systolic pressure is the pressure in the arteries during ventricular systole; it is the highest pressure in the arteries Diastolic pressure is the pressure in the arteries during diastole; it is lower than systolic pressure A pulse is the rhythmic bulging of artery walls with each heartbeat

Fainting is caused by inadequate blood flow to the head Animals with longer necks require a higher systolic pressure to pump blood a greater distance against gravity Blood is moved through veins by smooth muscle contraction, skeletal muscle contraction, and expansion of the vena cava with inhalation One-way valves in veins prevent backflow of blood

Leukocytes There are five major types of white blood cells, or leukocytes: monocytes, neutrophils, basophils, eosinophils, and lymphocytes They function in defense by phagocytizing bacteria and debris or by producing antibodies They are found both in and outside of the circulatory system

Platelets Platelets are fragments of cells and function in blood clotting

Blood Clotting Coagulation is the formation of a solid clot from liquid blood A cascade of complex reactions converts inactive fibrinogen to fibrin, forming a clot A blood clot formed within a blood vessel is called a thrombus and can block blood flow

Mammalian Respiratory Systems: A Closer Look A system of branching ducts conveys air to the lungs Air inhaled through the nostrils is warmed, humidified, and sampled for odors The pharynx directs air to the lungs and food to the stomach Swallowing tips the epiglottis over the glottis in the pharynx to prevent food from entering the trachea

Air passes through the pharynx, larynx, trachea, bronchi, and bronchioles to the alveoli, where gas exchange occurs Exhaled air passes over the vocal cords in the larynx to create sounds Cilia and mucus line the epithelium of the air ducts and move particles up to the pharynx This “mucus escalator” cleans the respiratory system and allows particles to be swallowed into the esophagus

Gas exchange takes place in alveoli, air sacs at the tips of bronchioles Oxygen diffuses through the moist film of the epithelium and into capillaries Carbon dioxide diffuses from the capillaries across the epithelium and into the air space

How a Mammal Breathes Mammals ventilate their lungs by negative pressure breathing, which pulls air into the lungs Lung volume increases as the rib muscles and diaphragm contract The tidal volume is the volume of air inhaled with each breath

The maximum tidal volume is the vital capacity After exhalation, a residual volume of air remains in the lungs

Control of Breathing in Humans In humans, the main breathing control centers are in two regions of the brain, the medulla oblongata and the pons The medulla regulates the rate and depth of breathing in response to pH changes in the cerebrospinal fluid The medulla adjusts breathing rate and depth to match metabolic demands