Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.

Slides:



Advertisements
Similar presentations
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Advertisements

W. Wei, S. Clockaerts, Y. M. Bastiaansen-Jenniskens, L. M. Gierman, S
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Intra-articular injection of the cyclooxygenase-2 inhibitor parecoxib attenuates osteoarthritis progression in anterior cruciate ligament-transected knee.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Adiabatic rotating frame relaxation of MRI reveals early cartilage degeneration in a rabbit model of anterior cruciate ligament transection  J. Rautiainen,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Changes in the T2 relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle.
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Low magnitude high frequency vibration accelerated cartilage degeneration but improved epiphyseal bone formation in anterior cruciate ligament transect.
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Positron emission tomography with 18F-FDG in osteoarthritic knee
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
M. Finnilä, O-M. Aho, V. Tiitu, J. Thevenot, J. Rautiainen, M
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
Osteophytes, juxta-articular radiolucencies and cancellous bone changes in the proximal tibia of patients with knee osteoarthritis  E.A. Messent, Ph.D.,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation 
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods  P. Podsiadlo, Ph.D., L.
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Cyclodextrin polysulphate protects articular cartilage in experimental lapine knee osteoarthritis  S. Groeneboer, M.Sc., P. Pastoureau, M.D., Ph.D., E.
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic.
UTE bi-component analysis of T2* relaxation in articular cartilage
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis 
M. R. Doschak, Ph. D. , J. M. LaMothe, Ph. D. , D. M. L. Cooper, B. Sc
K.H. Collins, R.A. Reimer, R.A. Seerattan, T.R. Leonard, W. Herzog 
Alterations in in vivo knee cartilage contact mechanics after anterior cruciate ligament reconstruction and correlations to clinical outcomes and regional.
Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilisation of the medial meniscus and increased joint laxity  J.P.
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model  F. Intema, H.A.W.
Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis  M. Bellido, L. Lugo,
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Joint loading and proximal tibia subchondral trabecular bone microarchitecture differ with walking gait patterns in end-stage knee osteoarthritis  B.C.
Regeneration of articular cartilage – Evaluation of osteochondral defect repair in the rabbit using multiphasic implants  S.R. Frenkel, Ph.D., G. Bradica,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
Estimation of articular cartilage properties using multivariate analysis of optical coherence tomography signal  P.H. Puhakka, N.C.R. te Moller, I.O.
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Effects of low level laser therapy: a study of status of cartilage, subchondral bone and gait adaptation in the rat anterior cruciate ligament transection.
Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content1 1 Supported by the Department.
Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical.
Weight-bearing asymmetry and vertical activity differences in a rat model of post- traumatic knee osteoarthritis  C.B. Hamilton, M.A. Pest, V. Pitelka,
Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury – comparison.
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
Osteoarthritis year in review 2016: mechanics
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
Hypertrophy and structural alterations in tibiofemoral articular cartilage 6-24 months after anterior cruciate ligament reconstruction  E. Thorhauer,
Presentation transcript:

Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate ligament transection  C. Florea, M.K.H. Malo, J. Rautiainen, J.T.A. Mäkelä, J.M. Fick, M.T. Nieminen, J.S. Jurvelin, A. Davidescu, R.K. Korhonen  Osteoarthritis and Cartilage  Volume 23, Issue 3, Pages 414-422 (March 2015) DOI: 10.1016/j.joca.2014.11.023 Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 (A) 3D reconstruction of femoral condyles with VOIs indicated. (B) 3D reconstruction of medial VOI. (C) Subchondral bone plate VOI. (D) Trabecular bone VOI. (E) The VOIs were placed in the weight-bearing regions of femoral condyles. Coronal microCT slices of rabbit medial and lateral femoral condyles in experimental (ACLT) and CTRL groups. Osteoarthritis and Cartilage 2015 23, 414-422DOI: (10.1016/j.joca.2014.11.023) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Medial and lateral rabbit femoral condyles. Dashed vertical lines represent the cutting direction line taken for FTIR, PLM and DD measurements. The biomechanical testing was conducted on the weight-bearing regions of femoral condyles (superimposed solid circles). FTIR, PLM and DD were conducted for the tissue at the same locations. Osteoarthritis and Cartilage 2015 23, 414-422DOI: (10.1016/j.joca.2014.11.023) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Representative histologic rabbit cartilage sections of medial and lateral femoral condyles labeled with Safranin-O in experimental (ACLT) and CTRL groups. Original magnification, 4×. Osteoarthritis and Cartilage 2015 23, 414-422DOI: (10.1016/j.joca.2014.11.023) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Collagen content (AU = absorption unit), collagen orientation angle and PG content of cartilage in ACLT (blue line) and CTRL (red line) groups as a function of tissue depth (mean, 95% CI, n = 8 in both groups), measured with FTIR, PLM and DD, respectively. (A) Medial femoral condyle compartment; (B) lateral femoral condyle compartment. The solid, horizontal line above indicates where significant differences occurred (P < 0.05). Osteoarthritis and Cartilage 2015 23, 414-422DOI: (10.1016/j.joca.2014.11.023) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions