Offering Ensemble products through WMS at Meteo-France

Slides:



Advertisements
Similar presentations
Streamflow assimilation for improving ensemble streamflow forecasts G. Thirel (1), E. Martin (1), J.-F. Mahfouf (1), S. Massart (2), S. Ricci (2), F. Regimbeau.
Advertisements

On the importance of meteorological downscaling for short, medium and long-range hydrological ensemble prediction over France G. Thirel (1), F. Regimbeau.
Copyright © 2010, Open Geospatial Consortium, Inc. Met Ocean Time Issue Resume Met-Ocean DWG 72nd OGC Technical Committee Frascati, Italy 8 March 2010.
Access to products from the SWFDP-EA RSMC, Nairobi web portal
ECMWF long range forecast systems
WCRP OSC 2011: Strategies for improving seasonal prediction © ECMWF Strategies for improving seasonal prediction Tim Stockdale, Franco Molteni, Magdalena.
The THORPEX Interactive Grand Global Ensemble (TIGGE) Richard Swinbank, Zoltan Toth and Philippe Bougeault, with thanks to the GIFS-TIGGE working group.
“OLYMPEX” Physical validation Precipitation estimation Hydrological applications Field Experiment Proposed for November-December th International.
Use of Probablistic Weather Forecasts by Utilities AMS - “Enhancing Weather Information with Probability Forecasts” January 2002.
“OLYMPEX” Physical validation Precipitation estimation Hydrological applications November-December 2014 PMM Hydrology Telecon, 22 October 2010.
National Centers for Environmental Prediction (NCEP) Hydrometeorlogical Prediction Center (HPC) Forecast Operations Branch Winter Weather Desk Dan Petersen.
Ensemble Post-Processing and it’s Potential Benefits for the Operational Forecaster Michael Erickson and Brian A. Colle School of Marine and Atmospheric.
The Evolving Roles and Responsibilities of Federal Agencies in Providing Transport and Dispersion Support Debbie Payton NOAA’s Ocean Service Office of.
® Hosted and Sponsored by Copyright © 2011Open Geospatial Consortium Met Ocean Best Practices Progress report 78th OGC Technical Committee Boulder, Colorado.
Ensemble products (at 12 hour intervals from 00 hr to 144 hrs): Africa Desk GFS Ensemble Web Page Spaghetti plots 500mb height (5500 and 5670, 5700 and.
Belgrad nov SEECOF-10 Forecasts for DJF Christian Viel Météo-France.
Toward a 4D Cube of the Atmosphere via Data Assimilation Kelvin Droegemeier University of Oklahoma 13 August 2009.
Available products for Seasonal forecasting J.P. Céron – Direction de la Climatologie.
Exploring sample size issues for 6-10 day forecasts using ECMWF’s reforecast data set Model: 2005 version of ECMWF model; T255 resolution. Initial Conditions:
Copyright © 2009, Open Geospatial Consortium, Inc. Time issue : Meteo Domain needs and WMS present means Meteorology DWG Frédéric Guillaud, Marie-Françoise.
ECMWF – DCPC Status and plans© ECMWFSlide 1 ECMWF DCPC status and plans Baudouin Raoult Head of Meteorological Data Section.
Copyright © 2009, Open Geospatial Consortium, Inc. Web Services Report from the working group of 2nd Workshop on GIS/OGC Use in Meteorology Frédéric Guillaud,
® Hosted and Sponsored by Copyright © 2011Open Geospatial Consortium EGOWS Interoperability testing report 9 June th OGC Technical Committee Boulder,
Dominic Lowe, British Atmospheric Data Centre, STFC OGC TC, Boulder.
NCEP Vision: First Choice – First Alert – Preferred Partner NOAA Hydrometeorological TestBed at the NCEP Hydrometeorological Prediction Center (HPC) Faye.
Short-Range Ensemble Prediction System at INM García-Moya, J.A., Santos, C., Escribà, P.A., Santos, D., Callado, A., Simarro, J. (NWPD, INM, SPAIN) 2nd.
NCEP CMC ECMWF MEAN ANA BRIAN A COLLE MINGHUA ZHENG │ EDMUND K. CHANG Applying Fuzzy Clustering Analysis to Assess Uncertainty and Ensemble System Performance.
® Sponsored by WMS BP for Ensemble Marie-Francoise Voidrot-Martinez and Chris Little Co chairs Met Ocean DWG.
Description of the IRI Experimental Seasonal Typhoon Activity Forecasts Suzana J. Camargo, Anthony G. Barnston and Stephen E.Zebiak.
Aim High…Fly, Fight, Win 1 WMS 1.3 Ensemble Layers AFWA uses WMS to visualize value added products derived from statistical analysis of all ensemble members.
Atmospheric Circulation Response to Future Arctic Sea Ice Loss Clara Deser, Michael Alexander and Robert Tomas.
Figures from “The ECMWF Ensemble Prediction System”
The MyOcean View Service: demo Jon Blower, Guy Griffiths, Kevin Yang, Keith Haines (University of Reading, UK) Thomas Loubrieu (Ifremer, France)
Beyond simple features: Do complex feature types need complex service descriptions?' B.N. Lawrence (1,2), D. Lowe (1,2), S. Pascoe (1,2) and A. Woolf (1).
Encast Global forecasting.
Météo France GISC and DCPCs
LONG RANGE FORECAST SW MONSOON
Working Group on Seasonal-to-Interannual Prediction
SWFDP in the Antilles (RA IV)
Field Values A field value is any data or measurement that you have plotted on a map EXAMPLES: Elevation (Feet about sea level) Temperature (at different.
LONG RANGE FORECAST SW MONSOON
Tom Hopson, Jason Knievel, Yubao Liu, Gregory Roux, Wanli Wu
Meteorology and Oceanography DWG
GPC CPTEC: Seasonal forecast activities update
Basic Forecasting Tips
Multi-model seasonal forecast Operational systems
Dick M.A. Schaap – Technical Coordinator SeaDataNet Training Workshop
OLYMPEX An “integrated” GV experiment
Assessment of the forecast quality of different seasonal climate prediction systems for the wind energy sector Doo Young Lee1, Albert Soret1, Veronica.
102nd OGC Technical Committee Delft, The Netherlands
Motivation Investigation of predictability using ensemble forecasts
DUST FORECAST OVER PART OF WEST AFRICA
GIFS-TIGGE project Richard Swinbank, and Young-Youn Park,
Integration of NCAR DART-EnKF to NCAR-ATEC multi-model, multi-physics and mutli- perturbantion ensemble-RTFDDA (E-4DWX) forecasting system Linlin Pan 1,
Met Ocean DWG Progress report Met Ocean WMS 1.3 Best Practices
EFnet: an added value of multi-model simulation
EGOWS Interop testing 9 June 2011
Adding Behaviors (methods)
Met Ocean DWG Report 78th OGC Technical Committee
Met Ocean DWG Interoperability Experiment
Forecasting the European wind drought of winter 2016/17 Case study
42h forecast HIRLAM 50km 24h accumulated precipitation.
SRNWP-PEPS COSMO General Meeting September 2005
A connectionist model in action
Met Ocean DWG Progress report Met Ocean WMS 1.3 Best Practices
WMS Implementation of Surface Weather Observations
Ensemble Forecast Layer
NWP activities in Austria in 2006/2007 Y. Wang
Forecasting the Weather
Seasonal common scores plots
Presentation transcript:

Offering Ensemble products through WMS at Meteo-France Marie-Francoise Voidrot March 2015 Météo-France

Meteo-France WMS The current WMS service … … still uses WMS 1.1.1 … does not (yet) implement the OGC Met Ocean Best Practices on Time and Elevation We do not plan to give access to single Ensemble members through WMS Layers are based on graphical products of ECMWF’s “catalogues of products” We have many graphical products (expressed as layers) which are based on our Ensemble forecast

Five Ensemble-specific dimensions reference_isoline          (For spaghettis = enhanced isoline) <Dimension name="reference_isoline" units="kts"/> <Extent name="reference_isoline">30,40,50,60</Extent> quantile                         (Vakue of wanted quantile- between 0 et 100) <Dimension name="quantile" units="%"/> <Extent name="quantile">0,10,25,33,50,66,75,90,100</Extent> quantile_interval            (example 20-80) <Dimension name="quantile_interval" units="%"/> <Extent name="quantile_interval">0-100,10-90,20-80,25-75,33-66</Extent> probability_over_limit              (For probabilities over a value) <Dimension name="probability_below_limit" units="°C"/> <Extent name="probability_below_limit">-10,-5,0,5,10,15,20,25,30,35</Extent> probability_below_limit              (For probabilities under a value) <Dimension name="probability_over_limit" units="°C"/> <Extent name="probability_over_limit ">-10,-5,0,5,10,15,20,25,30,35</Extent>

+ two general dimensions process              (for model or ensemble name. Similar to process concept in O&M2.0 ) <Dimension name="process" units=“None"/> <Extent name="process">PEPS__0.5</Extent> reference_time_period  (for accumulation duration over a period – precipitations, snow…)             <Dimension name="reference_time_period" units="ISO8601Period"/> <Extent name="reference_time_period">PT1H,PT3H,PT6H,PT12H,PT24H,PT48H</Extent> 4

Syntax in the name of the layers Statistical process_Parameter_Type of Level QUANTILE                 QUANTILE__WS__HEIGHT <Name>QUANTILE__T__HEIGHT</Name> <Name>QUANTILE__PRECIP__GROUND</Name> <Name>QUANTILE__SNOW__GROUND</Name> <Name>QUANTILE__CAPE_INS__GROUND</Name> <Name>QUANTILE__T__GROUND</Name> <Name>QUANTILE__HU__ISOBARIC</Name> SPAGHETTIS             SPAGHETTIS__Z__ISOBARIC__500 <Name>SPAGHETTIS__GUST__HEIGHT</Name> <Name>SPAGHETTIS__Z__ISOBARIC__500</Name> <Name>SPAGHETTIS__SNOW__GROUND</Name> <Name>SPAGHETTIS__P__SEA</Name> <Name>SPAGHETTIS__PRECIP__GROUND</Name> <Name>SPAGHETTIS__Z__ISO_PV_1500</Name>   INTERQUANTILE     INTERQUANTILE__GUST__HEIGHT <Name>INTERQUANTILE__NEBUL__GROUND</Name> <Name>INTERQUANTILE__PRECIP__GROUND</Name> MINIMA <Name>MINIMA__P__SEA</Name>

Syntax in the name of the layers Statistical process_Parameter_Type of Level MEAN      exemple :     MEAN__Z__ISOBARIC <Name>MEAN__HU__ISOBARIC</Name> <Name>MEAN__CAPE_INS__GROUND</Name> <Name>MEAN__WS__ISO_TP_1500</Name> <Name>MEAN__Z__ISO_TP_1500</Name>  STDEV                         STDEV__P__SEA <Name>STDEV__WS__ISO_TP_1500</Name> <Name>STDEV__CAPE_INS__GROUND</Name> <Name>STDEV__T__HEIGHT</Name> <Name>STDEV__Z__ISO_TP_1500</Name> <Name>STDEV__T__ISOBARIC</Name>  PROBABILITY           PROBABILITY__PRECIP__GROUND <Name>PROBABILITY__T__HEIGHT</Name> <Name>PROBABILITY__WS__HEIGHT</Name> <Name>PROBABILITY__HU__HEIGHT</Name> <Name>PROBABILITY__PRECIP__GROUND</Name> <Name>PROBABILITY__HU__ISOBARIC</Name> <Name>PROBABILITY__TPW__ISOBARIC</Name> <Name>PROBABILITY__T__GROUND</Name>  

Getcapabilities GETCAPABILITIES : http://synthese1.meteo.fr:8080/public/api/ogc/wms/ensemble?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities (2680 lines) 7

Request Examples and Plot http://syntone-preprod/public/api/ogc/wms/ensemble/?layers=SPAGHETTIS__P__SEA&width=250&styles=&srs=EPSG:4326&format=image/png&version=1.1.1&exceptions=application/vnd.ogc.se_inimage&time=2015-02-22T18:00:00Z&height=125&dim_process=PEARP__1.5&token=xxxx&bbox=-179.99,-89.99,179.99,89.99&dim_analysis_time=2015-02-18T18:00:00Z&request=GetMap&service=WMS&dim_reference_isoline=990&transparent=TRUE Spaghettis Mean Sea Level Pressure Isoline 990 hPa 8

Request Examples and Plot http://syntone-preprod/public/api/ogc/wms/ensemble/?dim_probability_sup=5&layers=PROBABILITY__PRECIP__GROUND&width=250&styles=&srs=EPSG:4326&format=image/png&version=1.1.1&exceptions=application/vnd.ogc.se_inimage&time=2015-02-21T18:00:00Z&height=125&dim_process=PEPS__0.5&token=XXXX&bbox=-179.9, -89.99, 179.89999999999995,89.99&request=GetMap&service=WMS&dim_reference_time_period=PT24H&transparent=TRUE Probability 24h-precipitations > 5 mm 9

Request Examples and Plot http://syntone-preprod/public/api/ogc/wms/ensemble/?layers=QUANTILE__FF_RAF__HEIGHT&width=250&styles=&srs=EPSG:4326&format=image/png&version=1.1.1&exceptions=application/vnd.ogc.se_inimage&height=125&dim_process=PEARP__0.5&token=XXXX&dim_quantile=75&bbox=-179.99,-89.99,179.99,89.99&request=GetMap&service=WMS&transparent=TRUE Quantile 90 Windgust 10

Pros / Cons Pros : Simple Flexible Usable whichever number of members into the Ensemble and the clients doesn’t need to know the ensemble size Reasonable size for the Getcapabilities Cons : Valid for post processed value added statistical layers not for the selection of specific members or group of members into the raw outputs. Semantics into the layer name even if minimal An operational implementation used since Mid 2014 11