CH-4: Imperfections in Solids

Slides:



Advertisements
Similar presentations
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Advertisements

Chapter 5 Defects in solids
Chapter ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for.
Chapter 18: Electrical Properties
Chapter 5: Imperfections in Solids
Chapter 5. Imperfections in Solids 5-1 Introduction For a crystalline solid we have assumed that perfect order exists throughout the material on an atomic.
Chapter 7 Ionic and Metallic Bonding
Ions and Ionic Compounds l OBJECTIVES: –Determine the number of valence electrons in an atom of a representative element.
Chapter 7 “Ionic and Metallic Bonding”
Chapter 7 “Ionic and Metallic Bonding”. Metallic Bonds are… l How metal atoms are held together in the solid. l Metals hold on to their valence electrons.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Point Defects Figure 10-4 illustrates four types of point defects.
Introduction To Materials Science, Chapter 4, Imperfections in solids University of Virginia, Dept. of Materials Science and Engineering 1 “Crystals are.
1. Chapter 4: Imperfections in Solids 2 Introduction Metals Alloys Solid solutions New/second phase Solute (guest) Solvent (host)
CHAPTER 4: IMPERFECTIONS IN SOLIDS
IMPERFECTIONS IN SOLIDS Week Solidification - result of casting of molten material –2 steps Nuclei form Nuclei grow to form crystals – grain structure.
The Muppet’s Guide to: The Structure and Dynamics of Solids 6. Crystal Growth & Defects.
CH-4: Imperfections in Solids So far we have seen perfect crystals: X-ray diffraction and Bragg’s law Imperfections or defects are covered in ch-4. Defects.
The Muppet’s Guide to: The Structure and Dynamics of Solids 6. Crystal Growth & Defects.
ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material.
Dislocations – Linear Defects –Two-dimensional or line defect –Line around which atoms are misaligned – related to slip Edge dislocation: –extra half-plane.
Crystalline Arrangement of atoms. Chapter 4 IMPERFECTIONS IN SOLIDS The atomic arrangements in a crystalline lattice is almost always not perfect. The.
Materials Engineering – Day 6
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 5: Defects in Solids Perfect crystals don’t exist. Many of the important properties of materials are strongly influenced by defects, or even entirely.
Phase Diagrams Phase: A homogeneous portion of a system that have uniform physical and chemical characteristics. Single phase Two phases For example at.
Thermally Activated Processes and Diffusion in Solids
Nonmetal Gases  Noble gases and diatomic elements (except bromine, and iodine)  These all have only London dispersion forces.  These are very weak intermolecular.
M V V K Srinivas Prasad K L University.  Ohm’s Law ◦ At constant temperature the current flowing through a conductor is directly proportional to the.
Steel An alloy is a mixture of two or more elements in solid solution in which the major component is a metal. Iron Carbon.
Alloys and Solid Solutions Chemistry 123 Spring 2008 Dr. Woodward.
Solidification & Crystalline Imperfections
Chapter 5 - Imperfections in Solids
Why are we interested IMPERFECTIONS IN SOLIDS ?
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Crystallographic Planes
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic sites. POINT DEFECTS CHAPTER 4: IMPERFECTIONS.
IMPERFECTIONS IN SOLIDS
CHAPTER 3: INELASTIC DEFORMATION. 6 Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic.
Chapter 7 “Metallic Bonding” Chemistry Grade 10. Bonding in Metals OBJECTIVES: –Explain the importance of alloys.
The Muppet’s Guide to: The Structure and Dynamics of Solids 7. Defects and Solutions.
김 석 범 MSM Lab. ( Graduate Student ) 디자인과 재료 문제풀 이.
A (0001) plane for an HCP unit cell is show below.
Lecture 17: Diffusion PHYS 430/603 material Laszlo Takacs UMBC Department of Physics.
Imperfections in Solids
Draw an orbital diagram for Al. Electrons and Ions Which electrons are responsible for chemical properties? Valence electrons Core electrons.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Material science & Metallurgy L D College of Engineering Mechanical Engineering 1.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Topic Name : Solid solution
Chapter 5: Imperfections in Solids
Chpt 5: Imperfections in Solids
CH-4: Imperfections in Solids
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Chapter 18: Electrical Properties
Point Defects in Crystalline Solids
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Chapter 3:week 8 Solid State Chemistry Imperfections in Solid Materials Band theory, insulators, semi conductors p-type and n-type semiconductors and.
Imperfections in Solid Materials
Posibilities of strength-enhancing
Rate Process and Diffusion
IMPERFECTIONS IN SOLIDS
Description & importance
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Imperfections in Solids
Presentation transcript:

CH-4: Imperfections in Solids Why STUDY Imperfections in Solids? Many of the important properties of materials are due to the presence of imperfections. Pure metals experience significant alterations when alloyed: Sterling silver: 92.5% Ag & 7.5% Cu. Cartridge brass: 70% Cu & 30% Zn. Impurities play important roles in semiconductors. Steel (composition ) and (making) Atomic defects are responsible for reducing gas pollutant emissions in automobiles: Catalytic Converters Molecules of pollutant gases become attached to surface defects of crystalline metallic materials ((Ce0.5Zr0.5)O2) in the catalytic converter. While attached to these sites, chemical reactions convert them into other non- or less-polluting substances.

Catalyst: (Ce0.5Zr0.5)O2 Catalyst is a substance that speeds up the rate of a chemical reaction without participating in the reaction itself. Catalyst adsorbs on its surface gas pollutants (CO and NOX) and molecules of unburned hydrocarbons, which are converted to CO2 and H2O. Schematic representation of surface defects that are potential adsorption sites for catalysts. High-resolution transmission electron micrograph of single crystal (Ce0.5Zr0.5)O2,which is used in catalytic converters.

Catalysts and Surface Defects A catalyst increases the rate of a chemical reaction without being consumed Active sites on catalysts are normally surface defects Fig. 4.10, Callister & Rethwisch 8e. Single crystals of (Ce0.5Zr0.5)O2 used in an automotive catalytic converter Fig. 4.11, Callister & Rethwisch 8e.

Types of Imperfections • Vacancy atoms • Interstitial atoms • Substitutional atoms Point defects • Dislocations Line defects • Grain Boundaries Area defects

Point Defects in Metals • Vacancies: -vacant atomic sites in a structure. Vacancy distortion of planes • Self-Interstitials: -"extra" atoms positioned between atomic sites. self- interstitial distortion of planes

Equilibrium Concentration: Point Defects • Equilibrium concentration varies with temperature! No. of defects Activation energy N æ  Q ö v v = exp ç  No. of potential N è k T ø defect sites Temperature Boltzmann's constant -23 (1.38 x 10 J/atom-K) -5 (8.62 x 10 eV/atom-K) Each lattice site is a potential vacancy site

Measuring Activation Energy æ ç N v = exp - Q k T è ö ø  • We can get Qv from an experiment. • Measure this... N v T exponential dependence! defect concentration • Replot it... 1/ T N v ln - Q /k slope

Estimating Vacancy Concentration • Find the equil. # of vacancies in 1 m3 of Cu at 1000C. • Given: r = 8.4 g / cm 3 A = 63.5 g/mol Cu Q = 0.9 eV/atom N = 6.02 x 1023 atoms/mol v A = 2.7 x 10-4 8.62 x 10-5 eV/atom-K 0.9 eV/atom 1273 K ç N v = exp - Q k T æ è ö ø  For 1 m3 , N = N A Cu r x 1 m3 = 8.0 x 1028 sites • Answer: N v = (2.7 x 10-4)(8.0 x 1028) sites = 2.2 x 1025 vacancies

Impurities in Solids A pure metal consisting of only one type of atom just isn’t possible. Even with sophisticated techniques, it is difficult to refine metals to a purity in excess of 99.9999%. Very few metals are used in the pure or nearly pure state: 1. Electronic wires- 99.99% purity Cu; Very high electrical conductivity. 2. 99.99% purity Al (super-pure Al) is used for decorative purposes-- Very bright metallic surface finish. Most engineering metals are combined with other metals or nonmetals to provide increased strength, higher corrosion resistance, etc. Cartridge brass: 70% Cu & 30% Zn. Sterling silver: 92.5% Ag & 7.5% Cu. Inconel 718, Ni-base super-alloy, used for jet engine parts, has 10 elements.

Solid Solutions Simplest type of alloy is that of solid solution.   Two types: 1. Substitution Solid Solution 2. Interstitial Solid Solution.

Conditions for Solid Solubility Conditions for substitutional solid solution (S.S.) W. Hume – Rothery rule 1. r (atomic radius) < 15% 2. Proximity in periodic table i.e., similar electronegativities 3. Same crystal structure for pure metals 4. Valency All else being equal, a metal will have a greater tendency to dissolve a metal of higher valency than one of lower valency

Application of Hume–Rothery rules – Solid Solutions Element Atomic Crystal Electro- Valence Radius Structure nega- (nm) tivity Cu 0.1278 FCC 1.9 +2 C 0.071 H 0.046 O 0.060 Ag 0.1445 FCC 1.9 +1 Al 0.1431 FCC 1.5 +3 Co 0.1253 HCP 1.8 +2 Cr 0.1249 BCC 1.6 +3 Fe 0.1241 BCC 1.8 +2 Ni 0.1246 FCC 1.8 +2 Pd 0.1376 FCC 2.2 +2 Zn 0.1332 HCP 1.6 +2 4.4: Which of these elements would you expect to form the following with copper: (a) A substitutional solid solution having complete solubility (b) A substitutional solid solution of incomplete solubility (c) An interstitial solid solution Table on p. 118, Callister & Rethwisch 8e.