OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum  Renée V. Hoch, Susan.

Slides:



Advertisements
Similar presentations
Atrial Identity Is Determined by a COUP-TFII Regulatory Network
Advertisements

John F. Golz, Emma J. Keck, Andrew Hudson  Current Biology 
Volume 17, Issue 6, Pages (November 2016)
Volume 94, Issue 4, Pages e3 (May 2017)
Jean M. Hébert, Yuji Mishina, Susan K. McConnell  Neuron 
Dynamic Expression of Erbb Pathway Members during Early Mammary Gland Morphogenesis  Olivia Wansbury, Heena Panchal, Michelle James, Suzanne Parry, Alan.
Volume 87, Issue 5, Pages (September 2015)
Volume 61, Issue 5, Pages (March 2009)
Volume 35, Issue 6, Pages (September 2002)
Volume 91, Issue 6, Pages (September 2016)
Atrial Identity Is Determined by a COUP-TFII Regulatory Network
Volume 70, Issue 5, Pages (June 2011)
Volume 35, Issue 2, Pages (July 2002)
Volume 16, Issue 4, Pages (April 2009)
A Hedgehog-Insensitive Form of Patched Provides Evidence for Direct Long-Range Morphogen Activity of Sonic Hedgehog in the Neural Tube  James Briscoe,
Yvonne Stahl, René H. Wink, Gwyneth C. Ingram, Rüdiger Simon 
Volume 71, Issue 6, Pages (September 2011)
All Mouse Ventral Spinal Cord Patterning by Hedgehog Is Gli Dependent and Involves an Activator Function of Gli3  C.Brian Bai, Daniel Stephen, Alexandra.
Matthew P. Harris, Sean M. Hasso, Mark W.J. Ferguson, John F. Fallon 
Volume 33, Issue 2, Pages (January 2002)
Volume 8, Issue 4, Pages (August 2014)
John F. Golz, Emma J. Keck, Andrew Hudson  Current Biology 
Volume 24, Issue 3, Pages (November 1999)
Coordinate Regulation of Motor Neuron Subtype Identity and Pan-Neuronal Properties by the bHLH Repressor Olig2  Bennett G. Novitch, Albert I. Chen, Thomas.
Volume 8, Issue 5, Pages (September 2014)
Volume 11, Issue 6, Pages (May 2015)
Volume 79, Issue 2, Pages (July 2013)
Volume 31, Issue 2, Pages (August 2001)
Volume 1, Issue 1, Pages (July 2001)
Volume 11, Issue 6, Pages (December 2006)
SOX2 Functions to Maintain Neural Progenitor Identity
Volume 13, Issue 6, Pages (November 2015)
Volume 22, Issue 2, Pages (February 2012)
Fgf10 Regulates Transition Period of Cortical Stem Cell Differentiation to Radial Glia Controlling Generation of Neurons and Basal Progenitors  Setsuko.
Volume 5, Issue 4, Pages (October 2015)
Volume 17, Issue 12, Pages (December 2016)
Volume 59, Issue 5, Pages (September 2008)
Volume 19, Issue 1, Pages (July 1997)
Volume 13, Issue 2, Pages (October 2015)
Volume 9, Issue 4, Pages (November 2014)
Volume 31, Issue 5, Pages (September 2001)
Jean M. Hébert, Yuji Mishina, Susan K. McConnell  Neuron 
The Role of Polysialic Acid in Migration of Olfactory Bulb Interneuron Precursors in the Subventricular Zone  Huaiyu Hu, Henry Tomasiewicz, Terry Magnuson,
A Homeodomain Protein Code Specifies Progenitor Cell Identity and Neuronal Fate in the Ventral Neural Tube  James Briscoe, Alessandra Pierani, Thomas.
The Graded Response to Sonic Hedgehog Depends on Cilia Architecture
Volume 5, Issue 6, Pages (December 2015)
Todd E Anthony, Corinna Klein, Gord Fishell, Nathaniel Heintz  Neuron 
MiR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins  Laura I. Hudish, Alex J. Blasky, Bruce Appel 
Xuepei Lei, Jianwei Jiao  Stem Cell Reports 
The Temporal Sequence of the Mammalian Neocortical Neurogenetic Program Drives Mediolateral Pattern in the Chick Pallium  Ikuo K. Suzuki, Takahiko Kawasaki,
Coordinate Regulation of Motor Neuron Subtype Identity and Pan-Neuronal Properties by the bHLH Repressor Olig2  Bennett G. Novitch, Albert I. Chen, Thomas.
Volume 22, Issue 4, Pages (April 2012)
Hepatocyte Growth Factor/Scatter Factor Is a Motogen for Interneurons Migrating from the Ventral to Dorsal Telencephalon  Elizabeth M Powell, Wendy M.
Microglia Modulate Wiring of the Embryonic Forebrain
Volume 8, Issue 4, Pages (April 2005)
Marta Nieto, Carol Schuurmans, Olivier Britz, François Guillemot 
Temporally Regulated Asymmetric Neurogenesis Causes Left-Right Difference in the Zebrafish Habenular Structures  Hidenori Aizawa, Midori Goto, Tomomi.
Jonas Muhr, Thomas M Jessell, Thomas Edlund  Neuron 
Volume 80, Issue 5, Pages (December 2013)
Volume 17, Issue 3, Pages (October 2016)
Volume 9, Issue 6, Pages (December 2014)
Volume 22, Issue 4, Pages (January 2018)
Activation of Intrinsic Growth State Enhances Host Axonal Regeneration into Neural Progenitor Cell Grafts  Hiromi Kumamaru, Paul Lu, Ephron S. Rosenzweig,
Volume 23, Issue 4, Pages (August 1999)
Volume 17, Issue 12, Pages (December 2016)
Marta Nieto, Carol Schuurmans, Olivier Britz, François Guillemot 
Volume 9, Issue 6, Pages (December 2014)
Volume 24, Issue 16, Pages (August 2014)
Volume 14, Issue 8, Pages (March 2016)
Formation of the ventral telencephalic corridor in the Pdn mutant VT
Presentation transcript:

OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum  Renée V. Hoch, Susan Lindtner, James D. Price, John L.R. Rubenstein  Cell Reports  Volume 12, Issue 3, Pages 482-494 (July 2015) DOI: 10.1016/j.celrep.2015.06.043 Copyright © 2015 The Authors Terms and Conditions

Cell Reports 2015 12, 482-494DOI: (10.1016/j.celrep.2015.06.043) Copyright © 2015 The Authors Terms and Conditions

Figure 1 Otx2 Expression in cKOs (A–B″) ISH on E11.5 coronal sections from (A–A″) Otx2f/+ and (B–B″) Otx2f/−; RxCre embryos using a full-length Otx2 riboprobe. Otx2 transcription appears upregulated in the MGE of RxCre cKOs (arrowheads and arrows in A′, A″, B′, and B″), and the MGE SVZ and MZ are hypoplastic (asterisks in A′ and B′). (C–H) Anti-OTX2 IHC. In RxCre cKOs (C–F), OTX2 protein expression is absent in cKO forebrains, except in the dorsomedial caudal cortex, hippocampal anlage, and choroid plexus (arrows, C′–C″ and D′–D″). (E) and (F) show higher-magnification views of the boxed regions in (C′) and (D′). (G–H) In Nkx2.1Cre cKOs, OTX2 expression was reduced in the MGE. (A–D″) Rostrocaudal series of coronal sections. Se, septum; MGE, medial ganglionic eminence; LGE, lateral ganglionic eminence; dCx, dorsomedial cortex; Hp, hippocampal anlage; POA, preoptic area; Di, diencephalon; CP, choroid plexus; OE, olfactory epithelium. Scale bars represent 0.25 mm (A and E) and 0.4 mm (G). Cell Reports 2015 12, 482-494DOI: (10.1016/j.celrep.2015.06.043) Copyright © 2015 The Authors Terms and Conditions

Figure 2 Anti-OTX2 ChIP-Seq Results “Called” peak locations relative to genomic loci are shown for genes (alphabetically organized) that are deregulated in Otx2 cKOs and for which ChIP-seq peaks were identified within ∼1 Mb of the gene body. Note the different scale bars for individual panels. Black arrows and text identify the Otx2-regulated gene of interest, whereas gray arrows and text designate nearby genes. For each panel, italicized “up” or “down” indicates whether the gene was upregulated or downregulated in RxCre cKO forebrains. The yellow stars indicate that the OTX2-ChIP-seq peak had an OTX2 binding motif. chr, chromosome; kb, kilobase. Cell Reports 2015 12, 482-494DOI: (10.1016/j.celrep.2015.06.043) Copyright © 2015 The Authors Terms and Conditions

Figure 3 Otx2 Restricts the Domain of Fgf Expression and Controls Regional Specification of the RPC (A–D and F–Q′) ISH comparing gene expression in (A, C, and F–Q) Otx2f/+ and (B, D, and F′–Q′) Otx2f/−; RxCre embryos at E11.5: (A and B) Fgf8, (C and D) Fgf17, (F–G′) Sprouty1, (H–I′) Sprouty2, (J–J′ and N–N′) Mkp3, (K–M′) En2, and (O–Q′) Pax3. (E) Quantification of the rostral expansion of Fgf expression in cKO and control embryos at E11.5 (mean ± SD). For each embryo, we calculated the distance from the caudal septum (where Fgf8 and Fgf17 are expressed) to the rostral limit of Fgf expression and expressed this as a percentage of the total (rostral telencephalic pole > caudal septum) distance. Rostral expansion was statistically significant for Fgf8 (p < 0.001), but not Fgf17 (p = 0.17; two-tailed t tests, unequal variance). mPFC, medial prefrontal cortex. Scale bars represent 0.5 mm (A–D), 0.2 mm (F–G′), and 0.25 mm (H–Q′). Cell Reports 2015 12, 482-494DOI: (10.1016/j.celrep.2015.06.043) Copyright © 2015 The Authors Terms and Conditions

Figure 4 Otx2 cKOs Exhibit Deficits in Molecular Markers of Oligodendrogenesis ISH on coronal hemisections from (A–I) Otx2f/+, (A′–I′) Otx2f/−; RxCre, embryos. (A–C′) Olig1 at E11.5, (D–F′) Olig2 at E11.5, and (G–I′) Olig1 at E13.5. Three planes of section are shown along the rostral-caudal axis. vMGE, ventral MGE; dMGE, dorsal MGE; vSe, ventral septum. Scale bars represent 0.5 mm (A–F′) and 0.4 mm (G–I′). Cell Reports 2015 12, 482-494DOI: (10.1016/j.celrep.2015.06.043) Copyright © 2015 The Authors Terms and Conditions

Figure 5 Reduced Neurogenesis and Proliferation in the Basal Ganglia of E11.5 Otx2 cKOs (A–H′) ISH and IHC on coronal hemisections (control, left; mutant, right). (A–H′) ISH: (A–H) Otx2f/+, (A′, C′, and D′–F′) Otx2f/−; RxCre, and (B′ and G′–H′) Otx2f/−; Nkx2.1Cre embryos using probes to (A–B′) Dlx1, (C and C′) Arx, and (E–H′) Robo2. Anti-Tuj1 IHC (D) Otx2f/+ and (D′) Otx2f/−; RxCre. (I–J′) Anti-pH3 IHC. (I′ and I) Otx2f/+ and (J and J′) Otx2f/−; RxCre embryos. (I′–J′) High magnification of (I) and (J). Red lines, neural/mesenchymal boundary; purple arrowheads, pH3+ SVZ cells; yellow rectangles highlight similar VZ regions of the vMGE in (K)–(L′) showing upregulation of Hes1 and Id4, respectively. (K and L) Otx2f/+ and (K′ and L′) Otx2f/−; RxCre embryos. (M–N′) Shh reduction in MZ and increase in VZ. mes, mesenchyme; SVZ, subventricular zone; VZ, ventricular zone. Scale bars, 0.5 mm. Cell Reports 2015 12, 482-494DOI: (10.1016/j.celrep.2015.06.043) Copyright © 2015 The Authors Terms and Conditions

Figure 6 Re-specification of the vMGE toward the POA Fate in Otx2 RxCre cKOs ISH on E11.5 coronal hemisections from (A–S) Otx2f/+, (A′–O′) Otx2f/−; RxCre, and (P′–S′) Otx2f/−; Nkx2.1Cre embryos showing expanded expression of POA genes (A–M′ and U–W′) and diminished expression of vMGE genes (N–S′ and T–T′) in cKOs. For each experiment (except Tal2 and Slit2 in Nkx2.1Cre cKOs), two or three sections are shown to demonstrate effects at different rostral-caudal planes. (A–C′) Hmx2 (Nkx5.2), (D–F′) Dbx1, (G–G′) Tgfb3, (H–I′ and U–U′) Slit2, (J–K′) Arhgap22, (L–M′ and V–W′) Sox14, (N–O′, T, and T′) Tal2, (P–Q′) Tll2, and (R–S′) Sall3. Scale bars, 0.5 mm. Cell Reports 2015 12, 482-494DOI: (10.1016/j.celrep.2015.06.043) Copyright © 2015 The Authors Terms and Conditions

Figure 7 E13.5 to E15.5 MGE and POA Development in Otx2 cKOs ISH on (A–O) Otx2f/+ and (A′ –O′) Otx2f/−; RxCre coronal hemisections, using the following probes: (A–C′) Nkx5.1, (D–E′) COUP-TF1, (F–F′) ER81, (G–I′) Zic1, (J–L′) Nkx2.1, (M–M′) Ikaros, and (N–O′) Sizn1. Arrowheads in (G) indicate three streams of neurons or progenitors that appear to emanate from the POA or vMGE and migrate toward the MGE, LGE, and ventral cortex; these streams are not apparent in cKOs. Arrowheads in (N)–(O′) point to the dMGE: Sizn1 expression appears to shift ventrally from its ventral LGE domain into the dMGE in cKOs. All are E13.5 except for Ikaros, which is E15.5. Note that in (L′), the dark region in the CGE (∗) is a tissue fold, not an ISH signal. GP, globus pallidus; Str, striatum. Scale bars, 0.5 mm. Cell Reports 2015 12, 482-494DOI: (10.1016/j.celrep.2015.06.043) Copyright © 2015 The Authors Terms and Conditions