Data Hiding Watermarking for Halftone Images

Slides:



Advertisements
Similar presentations
Digital Image Processing Lecture 3: Image Display & Enhancement
Advertisements

IEEE Transactions on Consumer Electronics, Vol. 45, No. 1, AUGUST 1999 Muhammad Bilal Ahmad and Tae-Sun Choi, Senior Member,IEEE.
1 Adjustable prediction-based reversible data hiding Authors: Chin-Feng Lee and Hsing-Ling Chen Source: Digital Signal Processing, Vol. 22, No. 6, pp.
A Secret Information Hiding Scheme Based on Switching Tree Coding Speaker: Chin-Chen Chang.
Natural and Seamless Image Composition Wenxian Yang, Jianmin Zheng, Jianfei Cai, Senior Member, IEEE, Susanto Rahardja, Senior Member, IEEE, and Chang.
1 High-Capacity Data Hiding in Halftone Images Using Minimal-Error Bit Searching and Least-Mean Square Filter Author: Soo-Chang Pei and Jing-Ming Guo Source:
Computer Vision Introduction to Image formats, reading and writing images, and image environments Image filtering.
1 Data Hiding Watermarking for Halftone Images Ming Sun Fu, Student Member, IEEE, and Oscar C. Au, Senior Member, IEEE, IEEE TRANSACTIONS ON IMAGE PROCESSING,
Half Toning. Continuous Half Toning Color Half Toning.
Huijuan Yang, Alex C. Kot, IEEE Fellow IEEE Transactions on Multimedia, Vol. 9, No. 3, Apr Multimedia Security Final Project R 葉容瑜 R
1 Security and Robustness Enhancement for Image Data Hiding Authors: Ning Liu, Palak Amin, and K. P. Subbalakshmi, Senior Member, IEEE IEEE TRANSACTIONS.
1 Iterative Multimodel Subimage Binarization for Handwritten Character Segmentation Author: Amer Dawoud and Mohamed S. Kamel Source: IEEE TRANSACTIONS.
3D polygonal meshes watermarking using normal vector distributions Suk-Hawn Lee, Tae-su Kim, Byung-Ju Kim, Seong-Geun Kwon.
Half-Tone Watermarking Multimedia Security. 2 Outline Half-tone technique Watermarking Method Measurement Robustness Conclusion.
On Reducing Broadcast Redundancy in Wireless Ad Hoc Network Author: Wei Lou, Student Member, IEEE, and Jie Wu, Senior Member, IEEE From IEEE transactions.
Reversible image hiding scheme using predictive coding and histogram shifting Source: Authors: Reporter: Date: Signal Processing, Vol.89, Issue 6, pp ,
1 Reversible Watermark Using the Difference Expansion of a Generalized Integer Transform Source : IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 8,
LUT Method For Inverse Halftone 資工四 林丞蔚 林耿賢. Outline Introduction Methods for Halftoning LUT Inverse Halftone Tree Structured LUT Conclusion.
1 Watermarking Scheme Capable of Resisting Sensitivity Attack IEEE signal processing letters, vol. 14, no. 2, February. 2007, pp Xinpeng Zhang.
Blind image data hiding based on self reference Source : Pattern Recognition Letters, Vol. 25, Aug. 2004, pp Authors: Yulin Wang and Alan Pearmain.
Tree-Structured Method for LUT Inverse Halftoning IEEE Transactions on Image Processing June 2002.
Error Diffusion (ED) Li Yang Campus Norrköping (ITN), University of Linköping.
Halftone Visual Cryptography
1 Reversible visible watermarking and lossless recovery of original images Source: IEEE transactions on circuits and systems for video technology, vol.
Introduction to Computer Security ©2004 Matt Bishop Information Security Principles Assistant Professor Dr. Sana’a Wafa Al-Sayegh 1 st Semester
Watermarking Scheme Capable of Resisting Sensitivity Attack
Der-Chyuan Lou and Jiang-Lung Liu,
A Secret Information Hiding Scheme Based on Switching Tree Coding
Lossy Compression of Stochastic Halftones with JBIG2
Presented by :Yuting Bao
Image Processing and Sampling
Multidisciplinary Engineering Senior Design Project P06441 See Through Fog Imaging Preliminary Design Review 05/19/06 Project Sponsor: Dr. Rao Team Members:
FM Halftoning Via Block Error Diffusion
Content-Sensitive Screening in Black and White
A new data transfer method via signal-rich-art code images captured by mobile devices Source: IEEE Transactions on Circuits and Systems for Video Technology,
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
High-capacity image hiding scheme based on vector quantization
第七章 資訊隱藏 張真誠 國立中正大學資訊工程研究所.
Hiding Data in a Color Palette Image with Hybrid Strategies
Source: Information Sciences, 2018, accpeted.
Reversible Data Hiding
Data Hiding Watermarking for Halftone Images
© 2010 Cengage Learning Engineering. All Rights Reserved.
Digital Image Processing Lecture 3: Image Display & Enhancement
A High Embedding Capacity Approach to Adaptive Steganography
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
An Algorithm for Compression of Bilevel Images
High Capacity Data Hiding for Grayscale Images
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Steganography in halftone images: conjugate error diffusion
Data hiding method using image interpolation
一種兼顧影像壓縮與資訊隱藏之技術 張 真 誠 國立中正大學資訊工程學系 講座教授
Source: Signal Processing: Image Communication 16 (2001) pp
HIDING DATA IN COLOR HALFTONE IMAGES USING DOT DIFFUSION WITH NONLINEAR THRESOLDING Volume 2, April 2007 April 2007 page(s):Ⅱ-205-Ⅱ-208 Digital Object.
Novel Multiple Spatial Watermarking Technique in Color Images
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
REDUKSI NOISE Pertemuan-8 John Adler
Halftone Image Data Hiding with Block-Overlapping Parity Check
Mr.M. Venkatesan Mrs.P.MeenakshiDevi Dr.K.Duraiswamy Dr.K.Thiagarajah
An Iterative Method for Lossless Data Embedding in BMP Images
Source: IEEE Access. (2019/05/13). DOI: /ACCESS
Hidden Digital Watermarks in Images
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Dynamic improved pixel value ordering reversible data hiding
High-Capacity Data Hiding in Halftone Images Using Minimal-Error Bit Searching and Least-Mean Square Filter Author: Soo-Chang Pei and Jing-Ming Guo Source:
A Quadratic-Residue-based Fragile Watermarking Scheme
Privacy-Preserving Reversible Watermarking for Data Exfiltration Prevention Through Lexicographic Permutations Source: IIH-MSP(2018): Authors:
Adopting secret sharing for reversible data hiding in encrypted images
Hiding Information in VQ Index Tables with Reversibility
Presentation transcript:

Data Hiding Watermarking for Halftone Images IEEE Transactions on Image Processing, VOL.11,No.4,April 2002 Ming Sun Fu ,Student Member ,IEEE Oscar C.Au ,Senior Member ,IEEE Reporter:Liu Rui May 20th,2008

Outline Introduction Data Hiding Without Original Multitone Image Data Hiding with Original Multitone Image Experimental Results Conclusion

Introduction Data Hiding for halftone images Data Hiding Smart Pair Toggling(DHSPT) Modified Data Hiding Error Diffusion (MDHED)

Data Hiding Without Original Multitone Image Data Hiding Self Toggling(DHST) Data Hiding Pair Toggling(DHPT) Data Hiding Smart Pair Toggling(DHSPT)

Data Hiding Self Toggling(DHST) A pseudo-random number generator with a seed is used to identify the pseudo-random location where the data is embedded. The pixel at the location is 0 or 1 according to the data bit to be embedded.

Data Hiding Self Toggling(DHST) 1 1 1,3 1,8 2,5 2,9 …… 8,1 1 … …… pseudo-random number generator host image Embedded data

Data Hiding Pair Toggling(DHPT) Master pixel: A pixel at a pseudo-random location needs to self-toggle Slave pixel: There are M pixels of opposite color in the neighborhood. One of the M pixels is chosen to self-toggle also. If M equals zero,no compelmentary toggling is performed 1 1

Data Hiding by Smart PairToggling DHSPT is the same as DHPT except that the choice of the slave pixel for complementary toggling is not random. The candidate with minimum after-toggle “connection” conafter(m,n)

Data Hiding by Smart PairToggling X1 X 2 X3 X4 X0 X5 X6 X7 X8 Where w(i) = 1 for i = 1, 3, 6, 8 and w(i) = 2 for i = 2, 4, 5, 7

Data Hiding by Smart PairToggling con(m,n)min=0 con(m,n)max=12 If x0 is toggled to x0 and the eight neighboring neighbors are not changed,then f(x0,xi)+f(x0,xi)=1 and 1 1

conafter(2,2)=1×0+2×1+1×1+2×1+2×1+1×0+2×1+1×0=9 1 conbefore(2,2)=1+1+1=3 conafter(2,2)=1×0+2×1+1×1+2×1+2×1+1×0+2×1+1×0=9

f(x0,xi)+f(x0,xi)=0 1 1 If the master and slave are horizontal or vertical neighbors W(i)=2,conbefore(m,n)+conafter(m,n)=10 Otherwise , w(i)=1,conbefore(m,n)+conafter(m,n)=11

conafter(1,2)=10-(2. 1+1. 1+1. 1)=6 conafter(1,3)=11-(2. 1+2 conafter(1,2)=10-(2*1+1*1+1*1)=6 conafter(1,3)=11-(2*1+2*1)=7 conafter(2,1)=10-(1*1+1*1)=8 conafter(2,3)=10-(1*1+2*1+1*1)=5 conafter(3,2)=10-(1*1+1*1)=8 1 1 1

Data Hiding With Original Multitone Image Data Hiding Error Diffusion(DHED) Modified Data Hiding Error Diffusion(MDHED) Both DHED and MDHED start off with DHST. DHED and MDHED use error diffusion to diffuse the self-toggling distortion to many neighboring pixels to achieve higher visual quality.

Error Diffusion The algorithm is a "neighborhood" algorithm. x 7 3 5 1 Floyd and Steinberg (1975)

Error Diffusion Dithering by Floyd-Steinberg error diffusion threshold = (black + white)/2 For all x and y do if f(x,y)<threshold then g(x,y)=black e=f(x,y) - black else g(x,y)=white e=f(x,y) – white end if f(x+1,y)= f(x+1,y)+7e/16 f(x-1,y+1)= f(x-1,y+1)+3e/16 f(x,y+1)= f(x,y+1)+5e/16 f(x+1,y+1)= f(x+1,y+1)+e/16 End for

Error Diffusion e=140-255 = -115 Threshold = 128 255 140 95 178 53 98 140 95 178 53 98 255 95 178 53 98 e=140-255 = -115

Error Diffusion x 7 3 5 1 255 45 156 17 91

Data Hiding Error Diffusion(DHED) Step 1 25 30 90 200 150 40 75 80 110 100 160 65 85 180 60 70 190 230 120 50 170 2,3 3,6 4,2 …… 6,3 255 …… 255 pseudo-random number generator Host Image

Data Hiding Error Diffusion(DHED) Step 2 205 70 190 80 140 95 170 50 100 x 7 3 5 1 255 140 45 148 14 92 e=140-255 = -115

Data Hiding Error Diffusion(DHED) x 7 3 5 1 205 70 190 80 140 95 170 50 100 e(1,1)=-50 e(1,2)=70 e(1,3)=-65 e(2,1)=80 a(2,2)=[(-50)+5*(70)+3*(-65)+7*(80)]/16=42 f(2,2)=140+42=182 y(2,2)=255 e(2,2)=-73 255 140 95 170 50 100 1 5 3 7 x

Modified Data Hiding Error Diffusion(MDHED) In MDHED, the DHST is applied as in DHED. The error diffusion is modified to become noncausal such that the error is fed not only to future pixels but also to past pixels C11 C12 C13 C21

Modified Data Hiding Error Diffusion(MDHED)

Modified Data Hiding Error Diffusion(MDHED) 25 30 90 200 150 40 75 110 100 160 65 85 180 255 190 230 120 50 80 170 70 60 255 200 190 230 120 50 80 160 170 70 30 60 255 255 eguess(4,2)=70-0=70 a(3,3)=【75+5×(80-0)+3×(110-0)+7×(85-0)】/16=88 f(3,3)=x(3,3)+a(3,3)+1/8×1/3×70=100+88+3=191 y(3,3)=255 e(3,3)=--64 eguess(4,2)=70-0=70 a(4,1)=【5×(65-0)+3×(85-0】/16=35 f(4,1)=x(4,1)+a(4,1)+3/8×1/3×70=74 y(4,1)=0 e(4,1)=74 eguess(4,2)=70-0=70 a(3,2)=【40+5×(75-0)+7×(65-0)】/16=51 f(3,2)=x(3,2)+a(3,2)+3/8×1/3×70=85+51+9=145 y(3,2)=255 e(3,2)=-110 eguess(4,2)=70-0=70 a(3,1)=【0+5×(85-0)+3×(100-0)+7×(30-0)】/16=58 f(3,1)=x(3,1)+a(3,1)+1/8×1/3×70=65+58+3=126 y(3,1)=0 e(3,1)=126

Modified Data Hiding Error Diffusion(MDHED) 255 200 190 230 120 50 80 160 170 70 30 60 a(4,2)=63 e(4,2)=110 f(4,2)=133

Experimental Results

Experimental Results

Experimental Results

Experimental Results

Conclusion When the original multitone image is not avaible,DHSPT can hide a large amount of data in halftone images. When the original multitone image is avaible and the halftoning method is error diffusion,MDHED can hide data in the halftone images .the experimental results suggest that the resulting image quality is very high.