In vitro method for 3D morphometry of human articular cartilage chondrons based on micro-computed tomography  I. Kestilä, J. Thevenot, M.A. Finnilä, S.S.

Slides:



Advertisements
Similar presentations
Osteoarthritis cartilage histopathology: grading and staging
Advertisements

B. Bai, Y. Li  Osteoarthritis and Cartilage 
J. K. Meckes, B. Caramés, M. Olmer, W. B. Kiosses, S. P. Grogan, M. K
Association between radiography-based subchondral bone structure and MRI-based cartilage composition in postmenopausal women with mild osteoarthritis 
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
2D and 3D MOCART scoring systems assessed by 9
Diffusion of Gd-DTPA2− into articular cartilage
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Indentation diagnostics of cartilage degeneration
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
The groove model of osteoarthritis applied to the ovine fetlock joint
Osteoarthritis and Cartilage
Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation 
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Osteoarthritis and Cartilage
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Osteoarthritis and Cartilage
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the horse  C.W. McIlwraith, D.D. Frisbie, C.E.
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Macroscopic cartilage repair scoring of defect fill, integration and total points correlate with corresponding items in histological scoring systems –
Delivery of agents into articular cartilage by laser-ultrasound
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
S. Kauppinen, S. S. Karhula, J. Thevenot, T. Ylitalo, L. Rieppo, I
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rabbit  S. Laverty, C.A. Girard, J.M. Williams,
Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
M. Finnilä, O-M. Aho, V. Tiitu, J. Thevenot, J. Rautiainen, M
Correlation of non-destructive electromechanical probe (Arthro-BST) assessment with histological scores and mechanical properties in human tibial plateau 
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Mechanical response of articular cartilage damaged by macro cracks
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
3D histopathological grading of osteochondral tissue using contrast-enhanced micro- computed tomography  H.J. Nieminen, H.K. Gahunia, K.P.H. Pritzker,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
H. J. Nieminen, T. Ylitalo, S. Kauppinen, E. Hæggström, M. Finnilä, S
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Osteoarthritis and Cartilage
T. J. Ylitalo, H. Gahunia, S. Karhula, M. Finnilä, H. Suhonen, E
Osteoarthritis cartilage histopathology: grading and staging
M. Cucchiarini, H. Madry, E.F. Terwilliger 
Surface characterization of degenerated articular cartilage surface by contrast- enhanced micro-computed tomography  T.J. Ylitalo, M. Finnilä, S. Karhula,
Nonlinear optical microscopy of articular cartilage
Osteoarthritis and Cartilage
K. Rahunen, L. Rieppo, P. Lehenkari, M. Finnilä, S. Saarakkala 
The validity of in vivo ultrasonographic grading of osteoarthritic femoral condylar cartilage: a comparison with in vitro ultrasonographic and histologic.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
MIR-455-3P and HDACs co-regulate chondrogenesis
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
Removal of the superficial zone of bovine articular cartilage does not increase its frictional coefficient  R. Krishnan, M. Caligaris, R.L. Mauck, C.T.
Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy  C.-Y. Wen, C.-B. Wu, B. Tang, T. Wang, C.-H.
A graphic user interface for the evaluation of knee osteoarthritis (GEKO): an open- source tool for histological grading  H.E. Kloefkorn, B.Y. Jacobs,
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Volumetric bone mineral density of the tibia is not increased in subjects with radiographic knee osteoarthritis  M. Abdin-Mohamed, M.B.B.S., M.R.C.P.,
P. Kang, Y. Yao, J. Yang, B. Shen, Z. Zhou, F. Pei 
Volumetric Analysis of Tidemark and Vessel Perforations through Calcified Cartilage from Micro-computed Tomography: Associations with Osteoarthritis Stage 
V.K. Shekhawat, M.P. Laurent, C. Muehleman, M.A. Wimmer 
The validity of in vitro ultrasonographic grading of osteoarthritic femoral condylar cartilage – a comparison with histologic grading  C.-Y. Tsai, M.D.,
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
3D-histopathological grading of articular cartilage using contrast-enhanced high- resolution micro-CT  H. Gahunia, S. Karhula, T. Ylitalo, E. Hæggström,
A.B. Lovati, A. Pozzi, M. Bongio, C. Recordati, G. Berzero, M. Moretti 
Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary.
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
Presentation transcript:

In vitro method for 3D morphometry of human articular cartilage chondrons based on micro-computed tomography  I. Kestilä, J. Thevenot, M.A. Finnilä, S.S. Karhula, I. Hadjab, S. Kauppinen, M. Garon, E. Quenneville, M. Haapea, L. Rieppo, K.P. Pritzker, M.D. Buschmann, H.J. Nieminen, S. Saarakkala  Osteoarthritis and Cartilage  Volume 26, Issue 8, Pages 1118-1126 (August 2018) DOI: 10.1016/j.joca.2018.05.012 Copyright © 2018 The Authors Terms and Conditions

Fig. 1 The pipeline of the methodology. First, the osteochondral cores were prepared from the tibiae and cut in half. The first half was subjected to histology (OARSI grading), and the second half to μCT. Based on the OARSI grades, 12 samples were selected for this study: six samples with OARSI grades 0–1.0, and six samples with OARSI grades 3–3.5. After the HMDS-based sample processing protocol, the samples were imaged with the μCT device, followed by image reconstructions and VOI selection. The chondron selection and segmentation algorithm was then applied to the VOIs, and finally, chondron analysis were performed. Osteoarthritis and Cartilage 2018 26, 1118-1126DOI: (10.1016/j.joca.2018.05.012) Copyright © 2018 The Authors Terms and Conditions

Fig. 2 Volumetric visualizations of HMDS-dried osteochondral samples from OARSI grades 0–4 imaged with a desktop μCT. The white arrowhead refers to the border of zone 1 (0–10% from the AC surface) and zone 2 (10–40%); the gray arrowhead refers to the border of zones 2 and 3 (40–100%). The OARSI grade 4 sample shows erosion into the deep zone (i.e., the complete degeneration of the surface zone and advanced degeneration of the middle zone). Osteoarthritis and Cartilage 2018 26, 1118-1126DOI: (10.1016/j.joca.2018.05.012) Copyright © 2018 The Authors Terms and Conditions

Fig. 3 Example 2D images of HMDS-dried intact and osteoarthritic AC imaged with μCT, and the adjacent Safranin O–stained histological sections. Osteoarthritis and Cartilage 2018 26, 1118-1126DOI: (10.1016/j.joca.2018.05.012) Copyright © 2018 The Authors Terms and Conditions

Fig. 4 Average observed chondron densities with their 95% CIs in three AC depth zones (zone 1: 0–10%; zone 2: 10–40%; zone 3: 40–100% from the AC surface) grouped by the OARSI grades. No statistically significant difference was observed between the OARSI grade groups in any zone. Osteoarthritis and Cartilage 2018 26, 1118-1126DOI: (10.1016/j.joca.2018.05.012) Copyright © 2018 The Authors Terms and Conditions

Fig. 5 Morphological parameters of the well-segmented chondrons. The average chondron volumes (A–C) and sphericity values (D–F) with their 95% CIs in three AC depth zones (zone 1: 0–10%; zone 2: 10–40%; zone 3: 40–100% from the AC surface) grouped by the OARSI grades. A and D: all the well-segmented chondrons; B and E: chondrons containing only single cells; C and F: chondrons containing only clusters. *P < 0.05, **P < 0.01, ***P < 0.001. Osteoarthritis and Cartilage 2018 26, 1118-1126DOI: (10.1016/j.joca.2018.05.012) Copyright © 2018 The Authors Terms and Conditions

Fig. 6 3D visualizations of representative segmented chondrons from both OARSI grade groups at different zones. Left: OARSI grades 0–1; right: OARSI grades 3–3.5. Osteoarthritis and Cartilage 2018 26, 1118-1126DOI: (10.1016/j.joca.2018.05.012) Copyright © 2018 The Authors Terms and Conditions