The Color-Vision Circuit in the Medulla of Drosophila

Slides:



Advertisements
Similar presentations
Héctor Herranz, Ruifen Weng, Stephen M. Cohen  Current Biology 
Advertisements

Volume 17, Issue 7, Pages (April 2007)
Bifocal Is a Downstream Target of the Ste20-like Serine/Threonine Kinase Misshapen in Regulating Photoreceptor Growth Cone Targeting in Drosophila  Wenjing.
The Drosophila Standard Brain
Takaki Komiyama, Liqun Luo  Current Biology 
Smitha Jagadish, Gilad Barnea, Thomas R. Clandinin, Richard Axel 
Volume 15, Issue 11, Pages (June 2005)
Steroid Signaling Establishes a Female Metabolic State and Regulates SREBP to Control Oocyte Lipid Accumulation  Matthew H. Sieber, Allan C. Spradling 
Volume 122, Issue 5, Pages (September 2005)
The DHHC Palmitoyltransferase Approximated Regulates Fat Signaling and Dachs Localization and Activity  Hitoshi Matakatsu, Seth S. Blair  Current Biology 
Ying Wang, Veit Riechmann  Current Biology 
Generalizable Learning: Practice Makes Perfect — But at What?
Volume 25, Issue 7, Pages (March 2015)
Sarah M Gibbs, James W Truman  Neuron 
Dcr-1 Maintains Drosophila Ovarian Stem Cells
Volume 25, Issue 24, Pages R1156-R1158 (December 2015)
Localized Netrins Act as Positional Cues to Control Layer-Specific Targeting of Photoreceptor Axons in Drosophila  Katarina Timofeev, Willy Joly, Dafni.
The Cadherin Flamingo Mediates Level-Dependent Interactions that Guide Photoreceptor Target Choice in Drosophila  Pei-Ling Chen, Thomas R. Clandinin 
Volume 18, Issue 21, Pages (November 2008)
Yvonne Stahl, René H. Wink, Gwyneth C. Ingram, Rüdiger Simon 
Volume 16, Issue 12, Pages (June 2006)
Volume 15, Issue 9, Pages (May 2005)
Drosophila JAB1/CSN5 Acts in Photoreceptor Cells to Induce Glial Cells
Grace Ji-eun Lah, Joshua Shing Shun Li, S. Sean Millard  Neuron 
Overexpressing Centriole-Replication Proteins In Vivo Induces Centriole Overduplication and De Novo Formation  Nina Peel, Naomi R. Stevens, Renata Basto,
Volume 96, Issue 4, Pages e4 (November 2017)
Volume 21, Issue 24, Pages (December 2011)
Helen Strutt, Mary Ann Price, David Strutt  Current Biology 
Volume 42, Issue 1, Pages (April 2004)
Transcription in the Absence of Histone H3.2 and H3K4 Methylation
Volume 12, Issue 4, Pages (April 2007)
Giovanni Marchetti, Gaia Tavosanis  Current Biology 
Neural Circuit Components of the Drosophila OFF Motion Vision Pathway
Ying Wang, Veit Riechmann  Current Biology 
Volume 16, Issue 7, Pages (April 2006)
Volume 81, Issue 2, Pages (January 2014)
Motion Processing Streams in Drosophila Are Behaviorally Specialized
Volume 78, Issue 3, Pages (May 2013)
Susana Gomis-Rüth, Corette J. Wierenga, Frank Bradke  Current Biology 
Marisa M. Merino, Christa Rhiner, Marta Portela, Eduardo Moreno 
Volume 18, Issue 17, Pages (September 2008)
Allan M Wong, Jing W Wang, Richard Axel  Cell 
Volume 49, Issue 2, Pages (January 2006)
Jillian L. Brechbiel, Elizabeth R. Gavis  Current Biology 
Benjamin J. Matthews, Wesley B. Grueber  Current Biology 
Mariana Melani, Kaylene J. Simpson, Joan S. Brugge, Denise Montell 
Bonnie Chu, Vincent Chui, Kevin Mann, Michael D. Gordon 
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Conserved miR-8/miR-200 Defines a Glial Niche that Controls Neuroepithelial Expansion and Neuroblast Transition  Javier Morante, Diana M. Vallejo, Claude.
Volume 25, Issue 11, Pages (June 2015)
Héctor Herranz, Ruifen Weng, Stephen M. Cohen  Current Biology 
PAR-1 Kinase Plays an Initiator Role in a Temporally Ordered Phosphorylation Process that Confers Tau Toxicity in Drosophila  Isao Nishimura, Yufeng Yang,
Volume 22, Issue 19, Pages (October 2012)
Volume 26, Issue 8, Pages (April 2016)
Volume 13, Issue 10, Pages (May 2003)
Paracrine Signaling through the JAK/STAT Pathway Activates Invasive Behavior of Ovarian Epithelial Cells in Drosophila  Debra L. Silver, Denise J. Montell 
Volume 20, Issue 7, Pages (April 2010)
F. Christian Bennett, Kieran F. Harvey  Current Biology 
Volume 24, Issue 7, Pages (March 2014)
Volume 22, Issue 3, Pages (March 1999)
Neural Circuit Assembly: Economically Wired by a Single Cadherin
Volume 78, Issue 3, Pages (May 2013)
Giovanni Marchetti, Gaia Tavosanis  Current Biology 
Volume 28, Issue 6, Pages e3 (March 2018)
Volume 16, Issue 15, Pages (August 2006)
Shamik DasGupta, Scott Waddell  Current Biology 
Volume 122, Issue 5, Pages (September 2005)
Volume 7, Issue 2, Pages (February 2001)
The mushroom body Current Biology
Object-Detecting Neurons in Drosophila
Presentation transcript:

The Color-Vision Circuit in the Medulla of Drosophila Javier Morante, Claude Desplan  Current Biology  Volume 18, Issue 8, Pages 553-565 (April 2008) DOI: 10.1016/j.cub.2008.02.075 Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 1 Transcription Factor Expression Patterns in the Medulla (A) Adult optic lobe showing neurons (Elav, blue) in the medulla (Me) cortex (arrows) and medulla rim (arrowheads), lobula (Lo), and lobula plate (LP). (B) High magnification of medulla layers. Brackets show lower medulla layers (M7–M10). (C) Expression pattern of ey-Gal4 driving UAS-CD8::GFP (green). Brackets show lower medulla layers and arrows axonal projections to the lobula. (D) Expression pattern of ap-Gal4. Arrowheads point to L4 neurons and arrows to axonal projections to the lobula. Brackets show medulla layers. (E) Expression pattern of dll-Gal4. (F) Expression pattern of c699-Gal4. Brackets in (E) and (F) show ramifications in the lamina. (G) Nonoverlapping expression of ey-Gal4 driving UAS-nuGFP (green), Distal-less antibody (red), and ap-lacZ (blue) in medulla neurons. Inset shows high magnification of medulla cortex. (H) Expression of ey-,dll-,c699-Gal4 driving UAS-nuGFP (green) and ap-lacZ (red) in medulla neurons (blue). Photoreceptor projections visualized with glass-lacZ (green) in (A) and (B), monoclonal antibody 24B10 (blue) in (C)–(F), and neuropil stained with DN-Cadherin (red) in (A)–(F). Scale bar: 50 μm in (A) and (C)–(H) or 15 μm in (B). Current Biology 2008 18, 553-565DOI: (10.1016/j.cub.2008.02.075) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 2 Projection Neurons in the Medulla MARCM single-cell clones in projection neurons with ap- (A, C, and G) or ey-Gal4 (E and I). (A) Tm3–6 cell. Arrow points to ramifications in M7–M9 layers and arrowhead to axonal projection to the lobula. (B) Close-up of Tm3–6 ramifications in photoreceptor layers. (C) Tm2 cell. Arrow points to ramifications in M9 layer and arrowhead to axonal projection to the lobula. (D) Close-up of Tm2 ramifications. Arrowheads points to lateral ramifications and arrow to axonal projection bypassing R7. (E) Noncolumnar Tm8 cell. (F) Close-up of Tm8 ramifications. Arrow points to ramifications in M8 layer. (G) A noncolumnar TmY2 cell. (H) Close-up of TmY2 ramifications. Arrow points to ramifications in M7 layer. (I) TmP&Y R7 cell. (J) Close-up of TmP&Y R7 ramifications. Arrow points to ramifications in M7 layer. Photoreceptors are visualized with 24B10 (blue). Abbreviations: P, pale; Y, yellow. Scale bar: 30 μm in (A), (C), (E), and (G); 15 μm in (B), (D), (F), (H), and (J); or 60 μm in (I). Current Biology 2008 18, 553-565DOI: (10.1016/j.cub.2008.02.075) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 3 Microcircuits in the Medulla MARCM single-cell clones (green) in local and projection neurons using ap- (A and G) or ey-Gal4 (C and E). The comparison between left and right panels highlights the similarity of projection patterns between local and projection neurons that suggests the existence of microcircuits. (A) Mi1 cell. Arrow points to ramifications in M10 layer. (B) Close-up of Mi1. Arrow points to ramification in M3. (C) TmY5a cell. Arrow points to ramifications in lower medulla layers and arrowheads to axonal projections to lobula and lobula plate. (D) Close-up of TmY5a ramifications in M3 and M6 layers (arrowheads). (E and F) Dm1–5 cell. (G) TmY8 cell. Arrowheads point projections to lobula and lobula plate. (H) Close-up of TmY8 ramifications. Photoreceptors are visualized with 24B10 antibody (blue). Scale bar: 15 μm in (A), (B), (D), (E), (F), and (H) or 40 μm in (C) and (G). Current Biology 2008 18, 553-565DOI: (10.1016/j.cub.2008.02.075) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 4 Axons in Projection and Local Neurons Expression of axonal marker UAS-tau-lacZ (red) in ey- (A and F) and ap-Gal4 (C and D) MARCM single-cell clones (green) in projection and local neurons. Axons in TmY5a (A) and Tm7 (D) projection neurons. Inset in (D) shows tau-LacZ staining in axonal projection of Tm7 cell. Close-up of TmY5a (B) and Tm7 (E) ramifications in photoreceptor layers. Axons in Mi9 (C) and Dm1–5 (F) local neurons. Axons are visualized with β-Gal (red) and photoreceptors with 24B10 (blue). Scale bar: 30 μm in (A) and (D) or 15 μm in (B), (C), (E), and (F). Current Biology 2008 18, 553-565DOI: (10.1016/j.cub.2008.02.075) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 5 Dendrites and Presynaptic Sites in Projection and Local Neurons Markers driven by specific Gal4 enhancer trap lines indicate the polarity of neurons in the medulla. Coexpression of dendritic UAS-Dscam 17.1 GFP (red) and UAS-AUG::DsRed (green) in (A), (B), (E), (F), (I), and (J), or presynaptic marker UAS-Syt-HA (red) and UAS-CD8:GFP (green) in (C), (D), (G), (H), (K), and (L) in Tm12 (A–D) projection neurons and Dm6 (E–H) and Pm1 (I–L) local neurons. Close-up of Tm12 (B and D), Dm6 (F and H), and Pm1 (J and L) ramifications (brackets). Arrows in (A) and (C) point to Syt-positive (C) axonal projections to the lobula and negative for Dscam 17.1 (A). Arrows in (B) point to postsynaptic sites and in (D) to presynaptic sites in lower medulla layers. Photoreceptors visualized with 24B10 (blue). Scale bar: 50 μm in (A), (C), (E), (G), (I), and (K) or 20 μm in (B), (D), (F), (H), (J), and (L). Current Biology 2008 18, 553-565DOI: (10.1016/j.cub.2008.02.075) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 6 Third-Order Neurons: Role of Lower Medulla Layers MARCM single-cell clones (green) using ey- (A, C, G, I, and K) or ap-Gal4 (E) in projection (A, E, and I) and local (C, G, and K) neurons. (A) TmLM7 cell. (B) Close-up of TmLM7 ramifications. (C) PmLM7 cell. (D) Close-up of PmLM7 ramifications. (E) T3 cell. (F) Close-up of T3 cell ramifications. (G) Pm9-10 cell. (H) Close-up of Pm9-10 ramifications. Coexpression of axonal marker UAS-tau-lacZ (red) in ey-Gal4 (I,K) MARCM-GFP single-cell clones (green) in projection (I) and local neurons (K). (I) Axons in TmLM7 neurons. (J) Close-up of TmLM7 ramifications. (K and L) Axons in Pm9-10 neurons. Axons visualized with β-Gal (red) and photoreceptors with 24B10 (blue). Scale bar: 30 μm in (A), (E), and (I) or 15 μm in (B), (C), (D), (F), (G), (H), and (J)–(L). Current Biology 2008 18, 553-565DOI: (10.1016/j.cub.2008.02.075) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 7 Axonal Projections to the Lobula Axonal innervation (green) of Tm2 (A), Tm3 (C), Tm5 (D), and TmLM8 (F) MARCM single-cell clones to the lobula (between dashed lines). Expression pattern of otd-Gal4 (B) driving UAS-CD8::GFP (green) in Tm2 cells and photoreceptors or 2135a-Gal4 in Tm12 cells (E). Brackets in (B) and (E) point to axonal projections in the lobula. Photoreceptors are visualized with 24B10 (blue) and neuropil with DN-Cadherin (red). Abbreviations: Lo, lobula; LM, lower medulla; LP, lobula plate; P, pale; and Y, yellow. Scale bar: 50 μm. Current Biology 2008 18, 553-565DOI: (10.1016/j.cub.2008.02.075) Copyright © 2008 Elsevier Ltd Terms and Conditions