Dynamics of Nuclear Receptor Helix-12 Switch of Transcription Activation by Modeling Time-Resolved Fluorescence Anisotropy Decays  Mariana R.B. Batista,

Slides:



Advertisements
Similar presentations
Probing α-310 Transitions in a Voltage-Sensing S4 Helix
Advertisements

Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Probing α-310 Transitions in a Voltage-Sensing S4 Helix
Michael A. Geeves, Sherwin S. Lehrer  Biophysical Journal 
Volume 107, Issue 12, Pages (December 2014)
Maik Goette, Martin C. Stumpe, Ralf Ficner, Helmut Grubmüller 
Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
Molecular Dynamics Simulations of Anti-Aggregation Effect of Ibuprofen
Daniel M. Freed, Peter S. Horanyi, Michael C. Wiener, David S. Cafiso 
Takako Takeda, Dmitri K. Klimov  Biophysical Journal 
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Volume 17, Issue 12, Pages (December 2009)
Photochemical Reaction Dynamics of the Primary Event of Vision Studied by Means of a Hybrid Molecular Simulation  Shigehiko Hayashi, Emad Tajkhorshid,
Transconformations of the SERCA1 Ca-ATPase: A Normal Mode Study
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 103, Issue 12, Pages (December 2012)
Volume 106, Issue 6, Pages (March 2014)
Large-Scale Conformational Dynamics of the HIV-1 Integrase Core Domain and Its Catalytic Loop Mutants  Matthew C. Lee, Jinxia Deng, James M. Briggs, Yong.
Protein Free Energy Landscapes Remodeled by Ligand Binding
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Michel A. Cuendet, Olivier Michielin  Biophysical Journal 
Smiruthi Ramasubramanian, Yoram Rudy  Biophysical Journal 
Volume 108, Issue 1, Pages (January 2015)
Volume 99, Issue 10, Pages (November 2010)
Coupling of Retinal, Protein, and Water Dynamics in Squid Rhodopsin
Anton Arkhipov, Wouter H. Roos, Gijs J.L. Wuite, Klaus Schulten 
Volume 98, Issue 2, Pages (January 2010)
CW and CCW Conformations of the E
Heleen Meuzelaar, Jocelyne Vreede, Sander Woutersen 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Binding of the Bacteriophage P22 N-Peptide to the boxB RNA Motif Studied by Molecular Dynamics Simulations  Ranjit P. Bahadur, Srinivasaraghavan Kannan,
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
Molecular-Dynamics Simulations of the ATP/apo State of a Multidrug ATP-Binding Cassette Transporter Provide a Structural and Mechanistic Basis for the.
Marian Breuer, Kevin M. Rosso, Jochen Blumberger  Biophysical Journal 
“DFG-Flip” in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop  Harish Vashisth, Luca Maragliano, Cameron F.
SAXS-Oriented Ensemble Refinement of Flexible Biomolecules
Volume 107, Issue 8, Pages (October 2014)
Volume 96, Issue 7, Pages (April 2009)
Yusuke Nakasone, Kazunori Zikihara, Satoru Tokutomi, Masahide Terazima 
Volume 5, Issue 1, Pages 1-2 (July 2003)
Ligand Binding to the Voltage-Gated Kv1
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Karunesh Arora, Tamar Schlick  Biophysical Journal 
Volume 108, Issue 6, Pages (March 2015)
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Activation of the Edema Factor of Bacillus anthracis by Calmodulin: Evidence of an Interplay between the EF-Calmodulin Interaction and Calcium Binding 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Molecular Dynamics Simulations of Lignin Peroxidase in Solution
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
The Role of Higher CO-Multipole Moments in Understanding the Dynamics of Photodissociated Carbonmonoxide in Myoglobin  Nuria Plattner, Markus Meuwly 
Mariana Levi, Kien Nguyen, Liah Dukaye, Paul Charles Whitford 
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Logan S. Ahlstrom, Osamu Miyashita  Biophysical Journal 
Volume 103, Issue 10, Pages (November 2012)
Dominico Vigil, Stephen C. Gallagher, Jill Trewhella, Angel E. García 
Dynamic Transmission of Protein Allostery without Structural Change: Spatial Pathways or Global Modes?  Tom C.B. McLeish, Martin J. Cann, Thomas L. Rodgers 
The Selectivity of K+ Ion Channels: Testing the Hypotheses
Jing Chen, John Neu, Makoto Miyata, George Oster  Biophysical Journal 
Chris Neale, Henry D. Herce, Régis Pomès, Angel E. García 
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Volume 113, Issue 3, Pages (August 2017)
Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, III: Molecular Dynamics Simulation Incorporating a.
Volume 84, Issue 4, Pages (April 2003)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Volume 98, Issue 2, Pages (January 2010)
Volume 98, Issue 4, Pages (February 2010)
Seongwon Kim, Takako Takeda, Dmitri K. Klimov  Biophysical Journal 
Presentation transcript:

Dynamics of Nuclear Receptor Helix-12 Switch of Transcription Activation by Modeling Time-Resolved Fluorescence Anisotropy Decays  Mariana R.B. Batista, Leandro Martínez  Biophysical Journal  Volume 105, Issue 7, Pages 1670-1680 (October 2013) DOI: 10.1016/j.bpj.2013.07.032 Copyright © 2013 Biophysical Society Terms and Conditions

Figure 1 Structural diversity of H12 conformations found in crystallographic models. (A) Crystal structure of RAR bound to all-trans retinoic acid (8), in which H12 traps the ligand inside the binding pocket. (B) Structure of apo-RXRα, displaying the extended H12 model, which suggested the mouse trap model of ligand binding (7). (C) Structure of PPARγ with and without ligand (17,18), which are very similar, and (D) structure of PPARα bound to an antagonist and a corepressor peptide (42), in which H12 is displaced from its agonist position and partially unfolded. Biophysical Journal 2013 105, 1670-1680DOI: (10.1016/j.bpj.2013.07.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 2 (A) Structural model of PPARγ bound to Rosiglitazone and attached to the CysFluor fluorescent probe. (B) Detail of the CysFluor probe and the orientation of its absorption dipole moment. Biophysical Journal 2013 105, 1670-1680DOI: (10.1016/j.bpj.2013.07.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 3 Calculated anisotropy decays for each simulation (gray) of holo-PPARγ, starting from different random conformations of the probe, in comparison with the experimentally observed (21) anisotropy decay rates for holo-PPARγ (black) and apo-PPARγ (red). Biophysical Journal 2013 105, 1670-1680DOI: (10.1016/j.bpj.2013.07.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 4 Characteristic molecular mobility of the CysFluor probe leading variable anistropy decay rates: (A) The slowest rate results from the docking of the probe in a cleft between H11 and H12. Intermediate decay rates result from (B) sliding of the probe onto the surface of the protein or (C) detachment from the surface in a fraction of the simulation time. (D) Very fast decays are characteristic of a probe that does not interact with the protein surface during the whole simulation. Biophysical Journal 2013 105, 1670-1680DOI: (10.1016/j.bpj.2013.07.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 5 Mobility of the H12 of PPARγ LBD in simulations displaying extreme decay rates (see Fig. 4). The maximum displacement in each simulation is indicated and shown. Simulation S1 displays the slowest decay rate and is related to minor H12 displacements. Simulation S4 displays a decay rate much faster than experimental ones, and greater but still subtle H12 movements. Biophysical Journal 2013 105, 1670-1680DOI: (10.1016/j.bpj.2013.07.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 6 Extended-H12 models simulated and the computed time-resolved anisotropy responses. The black lines represent the experimental apo-PPARγ decay (21), and gray lines are simulated curves. All simulated curves decay much faster than the experimental result, for all models, because the probe cannot interact with the protein surface. (A) PPARγ models obtained from SMD simulations (two superimposed models are shown). (B) The apo-RXRα crystallographic structure (7). (C) The extended-H12 ER crystallographic structure (19). Biophysical Journal 2013 105, 1670-1680DOI: (10.1016/j.bpj.2013.07.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 7 Mobility and anisotropy decays in 500 ns-long simulations. (A) RMSD of the CysFluor probe in ligand-bound (holo) PPARγ. (B) RMSD of the CysFluor probe in ligand-free PPARγ. Time-resolved anisotropy decays computed from the 500 ns simulations for (C) holo-PPARγ and (D) ligand-free PPARγ. Solid lines represent the decays computed from the computational models and dashed lines the experimental observation (21). Molecular representation of the movements experienced by the CysFluor probe and the H12 in the last 300 ns of these simulations for (E) ligand free PPARγ and (F) holo-PPARγ. Biophysical Journal 2013 105, 1670-1680DOI: (10.1016/j.bpj.2013.07.032) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 8 Contributions of each model for reproducing the experimental decays. Curves with contributions >2% are shown, and contributions >5% are labeled. The red curve is the best least-square fitting to the experimental data, which is depicted in black (in panels A, C, and D, the black and red curves almost overlap). (A) Optimal fitting of the holo-PPARγ experimental decay using all simulations of holo-PPARγ LBD. (B) Fitting of experimental apo-PPARγ decay fails using extended-H12 models, because no model produces decay slower than the experimental one, the best fit is simply the reproduction of the simulated curve with the slowest decay (red). The experimental apo-PPARγ decay can be nicely fit if considering holo-PPARγ models, with (C) a minor contribution of extended-H12 models (blue), or (D) without extended-H12 models at all. Biophysical Journal 2013 105, 1670-1680DOI: (10.1016/j.bpj.2013.07.032) Copyright © 2013 Biophysical Society Terms and Conditions