Physical Modeling of Dynamic Coupling between Chromosomal Loci

Slides:



Advertisements
Similar presentations
Cytoskeletal Polymer Networks: Viscoelastic Properties are Determined by the Microscopic Interaction Potential of Cross-links O. Lieleg, K.M. Schmoller,
Advertisements

Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli: Experiments and Stochastic Model  Pradeep Kumar, Albert Libchaber  Biophysical.
Volume 111, Issue 7, Pages (October 2016)
Mapping Three-Dimensional Stress and Strain Fields within a Soft Hydrogel Using a Fluorescence Microscope  Matthew S. Hall, Rong Long, Chung-Yuen Hui,
Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Benoit Tesson, Michael I. Latz  Biophysical Journal 
Precision and Variability in Bacterial Temperature Sensing
M. Maraldi, C. Valero, K. Garikipati  Biophysical Journal 
Volume 105, Issue 9, Pages (November 2013)
SAXS versus FRET: A Matter of Heterogeneity?
Dynamics of Active Semiflexible Polymers
Substrate Viscosity Enhances Correlation in Epithelial Sheet Movement
Looping Probabilities in Model Interphase Chromosomes
Local Viscoelastic Properties of Live Cells Investigated Using Dynamic and Quasi-Static Atomic Force Microscopy Methods  Alexander Cartagena, Arvind Raman 
Volume 112, Issue 6, Pages (March 2017)
Dynamics of the Serine Chemoreceptor in the Escherichia coli Inner Membrane: A High- Speed Single-Molecule Tracking Study  Dongmyung Oh, Yang Yu, Hochan.
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Volume 102, Issue 11, Pages (June 2012)
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
Mechanochemical Symmetry Breaking in Hydra Aggregates
Volume 104, Issue 5, Pages (March 2013)
Volume 111, Issue 2, Pages (July 2016)
Volume 103, Issue 12, Pages (December 2012)
Hirokazu Tanimoto, Masaki Sano  Biophysical Journal 
Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis  Pierre D.J. Moens, Michelle A. Digman,
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Yodai Takei, Sheel Shah, Sho Harvey, Lei S. Qi, Long Cai 
Yong Wang, Paul Penkul, Joshua N. Milstein  Biophysical Journal 
Volume 114, Issue 5, Pages (March 2018)
Volume 113, Issue 7, Pages (October 2017)
Volume 110, Issue 8, Pages (April 2016)
Volume 110, Issue 11, Pages (June 2016)
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Random Hydrolysis Controls the Dynamic Instability of Microtubules
Membrane Tethered Delta Activates Notch and Reveals a Role for Spatio-Mechanical Regulation of the Signaling Pathway  Yoshie Narui, Khalid Salaita  Biophysical.
V.M. Burlakov, R. Taylor, J. Koerner, N. Emptage  Biophysical Journal 
Volume 107, Issue 11, Pages (December 2014)
Critical Timing without a Timer for Embryonic Development
Volume 106, Issue 1, Pages (January 2014)
Volume 100, Issue 11, Pages (June 2011)
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Quantitative Image Restoration in Bright Field Optical Microscopy
Volume 110, Issue 7, Pages (April 2016)
Focal Adhesion Kinase Stabilizes the Cytoskeleton
Volume 100, Issue 11, Pages (June 2011)
Dynamics of Active Semiflexible Polymers
Volume 105, Issue 9, Pages (November 2013)
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Volume 106, Issue 1, Pages (January 2014)
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
Hydrodynamic Determinants of Cell Necrosis and Molecular Delivery Produced by Pulsed Laser Microbeam Irradiation of Adherent Cells  Jonathan L. Compton,
Volume 113, Issue 3, Pages (August 2017)
Volume 115, Issue 12, Pages (December 2018)
Volume 112, Issue 3, Pages (February 2017)
Bekele Gurmessa, Shea Ricketts, Rae M. Robertson-Anderson 
Systems Biophysics: Multiscale Biophysical Modeling of Organ Systems
The Role of Network Architecture in Collagen Mechanics
Volume 107, Issue 4, Pages (August 2014)
Volume 1, Issue 2, Pages (February 2012)
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Volume 115, Issue 6, Pages (September 2018)
Volume 108, Issue 8, Pages (April 2015)
Volume 110, Issue 12, Pages (June 2016)
Volume 98, Issue 3, Pages (February 2010)
The Size Distribution of Homozygous Segments in the Human Genome
Presentation transcript:

Physical Modeling of Dynamic Coupling between Chromosomal Loci Thomas J. Lampo, Andrew S. Kennard, Andrew J. Spakowitz  Biophysical Journal  Volume 110, Issue 2, Pages 338-347 (January 2016) DOI: 10.1016/j.bpj.2015.11.3520 Copyright © 2016 Biophysical Society Terms and Conditions

Figure 1 A Rouse polymer model for chromosome locus dynamics. (A) Schematic of the viscoelastic Rouse polymer model with two tagged monomers labeled red and green. (B) Schematic of chromosome loci labeled by the fluorescent repressor operator system (FROS) indicated by the green and red stars. Example images show false-color fluorescent (left) and bright-field (right) microscopy of a budding yeast (Saccharomyces cerevisiae) for in vivo locus tracking using a model No. IX70 fluorescence microscope (Olympus, Melville, NY). To see this figure in color, go online. Biophysical Journal 2016 110, 338-347DOI: (10.1016/j.bpj.2015.11.3520) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 2 Velocity autocorrelation function for the 84′ chromosome locus in E. coli. (A) Normalized velocity autocorrelation function for δ ranging from 1 s to 50 s in 1 s intervals indicated by the color bar. (B) Normalized velocity autocorrelation function with time rescaled by δ. (Dark gray line) Theoretical prediction from Eq. 5 for β = 0.39. Figure reproduced from results previously reported in Weber et al. (24). To see this figure in color, go online. Biophysical Journal 2016 110, 338-347DOI: (10.1016/j.bpj.2015.11.3520) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 3 VVC function for a viscoelastic Rouse polymer (α = 0.7). (A–E) Heat maps of the normalized VVC function Cvv(δ)(t,N/2,n2)/Cvv(δ)(0,N/2,N/2) for values of δ/tR ranging from 1.0×10−6 to 1.0×100. The VVC color scale is indicated by the color bar for all heat maps. (F) The three limiting behaviors for the VVC function: autocorrelated motion of the Rouse monomer before terminal relaxation (dotted line), autocorrelated motion of an effective particle or any Rouse monomer beyond the Rouse time (solid line), and uncorrelated motion (dashed line). To see this figure in color, go online. Biophysical Journal 2016 110, 338-347DOI: (10.1016/j.bpj.2015.11.3520) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 4 VVC function for δ≪tR and |Δn|≪N with α=0.7. (A) Normalized VVC function heat map. The VVC scale is indicated by the color bar normalized to the autocorrelation result at t=0. (B) Colored curves are slices taken from (A) for varying values of δ/tΔn. To see this figure in color, go online. Biophysical Journal 2016 110, 338-347DOI: (10.1016/j.bpj.2015.11.3520) Copyright © 2016 Biophysical Society Terms and Conditions