Atom Depth as a Descriptor of the Protein Interior

Slides:



Advertisements
Similar presentations
Volume 106, Issue 6, Pages (March 2014)
Advertisements

Volume 84, Issue 5, Pages (May 2003)
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Folding Pathways of Prion and Doppel
Volume 102, Issue 8, Pages (April 2012)
Martin Lignell, Lotta T. Tegler, Hans-Christian Becker 
Volume 112, Issue 7, Pages (April 2017)
Volume 94, Issue 5, Pages (March 2008)
Alfonso Jaramillo, Shoshana J. Wodak  Biophysical Journal 
Investigating How Peptide Length and a Pathogenic Mutation Modify the Structural Ensemble of Amyloid Beta Monomer  Yu-Shan Lin, Gregory R. Bowman, Kyle A.
The future of protein secondary structure prediction accuracy
Modeling Zymogen Protein C
Dalian Zhong, Li-Min Yang, Paul Blount  Biophysical Journal 
Transconformations of the SERCA1 Ca-ATPase: A Normal Mode Study
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 90, Issue 1, Pages (January 2006)
Relation between the Conformational Heterogeneity and Reaction Cycle of Ras: Molecular Simulation of Ras  Chigusa Kobayashi, Shinji Saito  Biophysical.
Structural and Dynamic Properties of the Human Prion Protein
Volume 96, Issue 9, Pages (May 2009)
Volume 106, Issue 6, Pages (March 2014)
Microsecond Unfolding Kinetics of Sheep Prion Protein Reveals an Intermediate that Correlates with Susceptibility to Classical Scrapie  Kai-Chun Chen,
Volume 86, Issue 4, Pages (April 2004)
Volume 100, Issue 4, Pages (February 2011)
A Comparison of Genotype-Phenotype Maps for RNA and Proteins
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Brittny C. Davis, Jodian A. Brown, Ian F. Thorpe  Biophysical Journal 
A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations  Jianwen A. Feng,
Volume 90, Issue 1, Pages (January 2006)
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 84, Issue 2, Pages (February 2003)
Volume 74, Issue 1, Pages (January 1998)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
A Molecular Dynamics Study of Ca2+-Calmodulin: Evidence of Interdomain Coupling and Structural Collapse on the Nanosecond Timescale  Craig M. Shepherd,
The Arginine-Rich RNA-Binding Motif of HIV-1 Rev Is Intrinsically Disordered and Folds upon RRE Binding  Fabio Casu, Brendan M. Duggan, Mirko Hennig 
Volume 114, Issue 5, Pages (March 2018)
Volume 96, Issue 7, Pages (April 2009)
Nucleotide Effects on the Structure and Dynamics of Actin
Volume 93, Issue 1, Pages (July 2007)
Ligand Binding to the Voltage-Gated Kv1
Functional Plasticity in the Substrate Binding Site of β-Secretase
Probing the “Dark Matter” of Protein Fold Space
Volume 15, Issue 9, Pages (September 2007)
Volume 95, Issue 9, Pages (November 2008)
Volume 85, Issue 4, Pages (October 2003)
Volume 99, Issue 2, Pages (July 2010)
Alfonso Jaramillo, Shoshana J. Wodak  Biophysical Journal 
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Volume 106, Issue 10, Pages (May 2014)
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Hydrogen Bonding in Helical Polypeptides from Molecular Dynamics Simulations and Amide Hydrogen Exchange Analysis: Alamethicin and Melittin in Methanol 
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Rita Pancsa, Daniele Raimondi, Elisa Cilia, Wim F. Vranken 
Structural Flexibility of CaV1. 2 and CaV2
Volume 74, Issue 5, Pages (May 1998)
On Hydrophobicity and Conformational Specificity in Proteins
P. Müller-Buschbaum, R. Gebhardt, S.V. Roth, E. Metwalli, W. Doster 
Volume 83, Issue 6, Pages (December 2002)
Volume 84, Issue 1, Pages (January 2003)
Volume 103, Issue 2, Pages (July 2012)
Volume 104, Issue 2, Pages (January 2013)
Volume 74, Issue 1, Pages (January 1998)
Lucy R. Forrest, Christopher L. Tang, Barry Honig  Biophysical Journal 
Volume 88, Issue 1, Pages (January 2005)
The Relation between α-Helical Conformation and Amyloidogenicity
Yinon Shafrir, Stewart R. Durell, H. Robert Guy  Biophysical Journal 
Demian Riccardi, Qiang Cui, George N. Phillips  Biophysical Journal 
Dalian Zhong, Li-Min Yang, Paul Blount  Biophysical Journal 
Patrick J. Fleming, Karen G. Fleming  Biophysical Journal 
Volume 98, Issue 4, Pages (February 2010)
Volume 19, Issue 4, Pages (April 2011)
Presentation transcript:

Atom Depth as a Descriptor of the Protein Interior Alessandro Pintar, Oliviero Carugo, Sándor Pongor  Biophysical Journal  Volume 84, Issue 4, Pages 2553-2561 (April 2003) DOI: 10.1016/S0006-3495(03)75060-7 Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 1 (a) Plot of mean residue dpx (dpxr, Å), (b) occluded surface packing value (OSP), and (c) residue solvent accessibility (rsa, %) versus residue number for the C-terminal bromodomain of human TAFII250 (PDB: 1EQF; residues 1500–1625). In the dpxr plot, important residues are labeled with their amino acid one-letter code and residue number; the same residues are labeled with an asterisk in the OSP and rsa plots. (d) Plot of mean residue dpx (dpxr, Å) versus OSP and rsa (%). Biophysical Journal 2003 84, 2553-2561DOI: (10.1016/S0006-3495(03)75060-7) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 2 Plot of the number of observations (number of atoms, %) in each dpx interval (a, Δ=1.00Å; b, Δ=0.50Å; c, Δ=0.25Å; d, Δ=0.10Å) for the double bromodomain module of human TAFII250 (PDB: 1EQF). In b, c, and d, the peak corresponding to solvent-accessible atoms (dpx=0) is out of scale for clarity. Biophysical Journal 2003 84, 2553-2561DOI: (10.1016/S0006-3495(03)75060-7) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 3 Plot of the maximum (dpxmax, circles) and average (dpxave, diamonds) value of dpx versus chain length for a set of 136 single-chain proteins for which the crystal structure has been determined at a resolution ≤2.0Å. Biophysical Journal 2003 84, 2553-2561DOI: (10.1016/S0006-3495(03)75060-7) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 4 Plot of the mean residue depth (dpxr, Å) for each amino acid type (one-letter code), calculated from a set of 136 protein structures (see text for details). Top, overall; bottom, by secondary structure assignment (square, strand; circle; helix; triangle: turn, diamond, coil). Standard deviation values are also shown. Biophysical Journal 2003 84, 2553-2561DOI: (10.1016/S0006-3495(03)75060-7) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 5 Plot of the maximum (dpxmax, circles) and average (dpxave, squares) values for representative structures of the four-helix bundle topology (a, mainly α-proteins, CATH code: 1.20.120; 17 homologous superfamilies) and the jelly rolls topology (b, mainly β-proteins, CATH code: 2.60.120; 17 homologous superfamilies) plotted versus chain length (number of residues). Biophysical Journal 2003 84, 2553-2561DOI: (10.1016/S0006-3495(03)75060-7) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 6 (a) Mean residue depth (dpxr, Å, filled diamonds) and residue-solvent accessibility (rsa, Å2, empty diamonds) calculated for 3CHY and plotted versus sequence entropy (S) calculated for 98 structural neighbors of 3CHY. (b) Mean residue depth (dpxr, Å, lower line) and sequence entropy (S, upper line) plotted versus residue number. In a, also a linear fit of dpxr is shown. In b, line breaks represent positions at which less than two-thirds of residues could be aligned. Biophysical Journal 2003 84, 2553-2561DOI: (10.1016/S0006-3495(03)75060-7) Copyright © 2003 The Biophysical Society Terms and Conditions