Kite Proteins: a Superfamily of SMC/Kleisin Partners Conserved Across Bacteria, Archaea, and Eukaryotes  Jan J. Palecek, Stephan Gruber  Structure  Volume.

Slides:



Advertisements
Similar presentations
Volume 18, Issue 2, Pages (February 2010)
Advertisements

Bhalchandra Jadhav, Klemens Wild, Martin R. Pool, Irmgard Sinning 
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
A Naturally Occurring Repeat Protein with High Internal Sequence Identity Defines a New Class of TPR-like Proteins  Jacob D. Marold, Jennifer M. Kavran,
Volume 15, Issue 11, Pages (November 2007)
Arvin C. Dar, Michael S. Lopez, Kevan M. Shokat  Chemistry & Biology 
Sebastian Meyer, Raimund Dutzler  Structure 
Kristopher Josephson, Naomi J. Logsdon, Mark R. Walter  Immunity 
Structure of an LDLR-RAP Complex Reveals a General Mode for Ligand Recognition by Lipoprotein Receptors  Carl Fisher, Natalia Beglova, Stephen C. Blacklow 
Volume 124, Issue 1, Pages (January 2006)
Volume 9, Issue 5, Pages (May 2001)
Volume 15, Issue 4, Pages (April 2007)
Volume 26, Issue 1, Pages e3 (January 2018)
Peter Chien, Robert A. Grant, Robert T. Sauer, Tania A. Baker 
A View into the Blind Spot: Solution NMR Provides New Insights into Signal Transduction Across the Lipid Bilayer  Matthew E. Call, James J. Chou  Structure 
Chaperone-Assisted Crystallography with DARPins
Volume 24, Issue 12, Pages (December 2016)
Volume 23, Issue 7, Pages (July 2015)
The Gemin6-Gemin7 Heterodimer from the Survival of Motor Neurons Complex Has an Sm Protein-like Structure  Yingli Ma, Josée Dostie, Gideon Dreyfuss, Gregory.
Volume 22, Issue 1, Pages (January 2014)
Volume 18, Issue 2, Pages (February 2010)
Volume 14, Issue 5, Pages (May 2006)
Volume 15, Issue 1, Pages (January 2007)
Volume 14, Issue 6, Pages (June 2006)
Rong Shi, Laura McDonald, Miroslaw Cygler, Irena Ekiel  Structure 
Volume 19, Issue 7, Pages (July 2011)
Nadine Keller, Jiří Mareš, Oliver Zerbe, Markus G. Grütter  Structure 
Volume 25, Issue 12, Pages e3 (December 2017)
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 4, Issue 5, Pages (November 1999)
Crystal Structure of the MazE/MazF Complex
Volume 20, Issue 10, Pages (October 2012)
Volume 124, Issue 5, Pages (March 2006)
Volume 17, Issue 6, Pages (June 2009)
A Gating Mechanism of the Serotonin 5-HT3 Receptor
Jason O. Moore, Wayne A. Hendrickson  Structure 
Qian Steven Xu, Rebecca B. Kucera, Richard J. Roberts, Hwai-Chen Guo 
Volume 19, Issue 9, Pages (September 2011)
Volume 15, Issue 9, Pages (September 2007)
Volume 25, Issue 11, Pages e4 (November 2017)
Volume 8, Issue 5, Pages (November 2001)
Volume 14, Issue 8, Pages (August 2006)
Volume 15, Issue 11, Pages (November 2007)
Volume 21, Issue 12, Pages (December 2013)
Jason O. Moore, Wayne A. Hendrickson  Structure 
Crystal Structures of the BAR-PH and PTB Domains of Human APPL1
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
Crystal Structures of Mycobacterium tuberculosis KasA Show Mode of Action within Cell Wall Biosynthesis and its Inhibition by Thiolactomycin  Sylvia R.
Volume 16, Issue 3, Pages (March 2008)
Crystal Structures of Mycobacterium tuberculosis KasA Show Mode of Action within Cell Wall Biosynthesis and its Inhibition by Thiolactomycin  Sylvia R.
Silvia Onesti, Andrew D Miller, Peter Brick  Structure 
Volume 26, Issue 14, Pages R661-R662 (July 2016)
Volume 52, Issue 3, Pages (November 2013)
Jeffrey J. Wilson, Rhett A. Kovall  Cell 
Peter Chien, Robert A. Grant, Robert T. Sauer, Tania A. Baker 
Solution Structure of a TBP–TAFII230 Complex
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Volume 24, Issue 7, Pages (July 2016)
Arvin C. Dar, Michael S. Lopez, Kevan M. Shokat  Chemistry & Biology 
Volume 20, Issue 1, Pages (January 2012)
Volume 13, Issue 5, Pages (May 2005)
Volume 19, Issue 2, Pages (February 2011)
Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance
Kristopher Josephson, Naomi J. Logsdon, Mark R. Walter  Immunity 
Volume 24, Issue 3, Pages (March 2016)
Volume 7, Issue 6, Pages (June 2001)
Structural Switch of the γ Subunit in an Archaeal aIF2αγ Heterodimer
Crystal Structure of Escherichia coli RNase D, an Exoribonuclease Involved in Structured RNA Processing  Yuhong Zuo, Yong Wang, Arun Malhotra  Structure 
Volume 19, Issue 7, Pages (July 2011)
Volume 25, Issue 1, Pages (January 2017)
Presentation transcript:

Kite Proteins: a Superfamily of SMC/Kleisin Partners Conserved Across Bacteria, Archaea, and Eukaryotes  Jan J. Palecek, Stephan Gruber  Structure  Volume 23, Issue 12, Pages 2183-2190 (December 2015) DOI: 10.1016/j.str.2015.10.004 Copyright © 2015 Elsevier Ltd Terms and Conditions

Structure 2015 23, 2183-2190DOI: (10.1016/j.str.2015.10.004) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 1 Architectural Similarities and Differences Across SMC Complexes (A) Overview of the subunit composition of pro- and eukaryotic SMC complexes. For simplicity, subunits of condensin II are omitted from the table. κ- and ν-SMC denote SMC proteins binding to kleisin's C-terminal WH domain and N-terminal helical bundle, respectively (Burmann et al., 2013). KiteA and kiteP designate kite proteins binding to anterior and posterior segments of kleisin, respectively (Kamada et al., 2013). Asterisks indicate non-canonical dimeric kleisin subunits (Woo et al., 2009). (B) Schematic representation of the architecture of Smc/ScpAB and MukBEF. (C) Representation of eukaryotic SMC complexes. Arrows indicate putative evolutionary relationships of different SMC/kleisin complexes. Dashed boxes mark the position of cartoon crystal structures depicted at the bottom right-hand corner of several schemes. Full versions of the miniature cartoon models of kleisin/kite and kleisin/heat structures are shown in Figure S3. Structure 2015 23, 2183-2190DOI: (10.1016/j.str.2015.10.004) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 2 A Conserved Kite/Kite Interface Located at the WHA Side and top views of different kite dimers in ribbon representation. Labeling of helices and sheets are kept consistent between the different structures. The dimerization interface is created by head-to-head arrangement of hydrophobic residues emanating from helix α1, residues within the α3-β1 loop, and residues located C-terminal to the β2-sheet (helix α4 or a loop). (A) Human NSE1/NSE3 dimer (PDB: 3NW0). Nse1 and Nse3 features are shown in black and red, respectively. (B) Streptococcus pneumoniae ScpB/ScpB (PDB: 4I98). (C) Escherichia coli MukE/MukE (PDB: 3EUH). Structure 2015 23, 2183-2190DOI: (10.1016/j.str.2015.10.004) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 3 Kite Proteins Bind Kleisin Helices Via Their WHB Pockets The C-terminal WH domain of anterior (left panels) and posterior (right panels) kite proteins are shown together with interacting fragments of the respective kleisin subunit. (A) Model of the human NSE3 WHB pocket (PDB: 3NW0) bound to a NSE4b conserved helical motif [in purple; generated by HADDOCK docking (de Vries et al., 2010) based on experimental data from (Guerineau et al., 2012; Hudson et al., 2011)]. (B) Streptococcus pneumoniae ScpB anterior WHB pocket (PDB: 4I98.C) bound to an amino-terminal ScpA helix (amino acids 94–114) (left panel) and posterior WHB pocket (PDB: 4I98.B) bound to a C-terminal ScpA helix (PDB: 4I98.A) (right panel). (C) Escherichia coli anterior MukE WHB pocket (PDB: 3EUH.C) bound to a MukF helix (amino acids 296–311; PDB: 3EUH.A) (left panel). In the posterior MukE (PDB: 3EUH.D), the pocket for MukF is occupied by helix α5 (right panel). Structure 2015 23, 2183-2190DOI: (10.1016/j.str.2015.10.004) Copyright © 2015 Elsevier Ltd Terms and Conditions