Goodness-of-Fit Tests and Contingency Tables

Slides:



Advertisements
Similar presentations
Chapter 16 Goodness-of-Fit Tests and Contingency Tables
Advertisements

CHI-SQUARE(X2) DISTRIBUTION
Chi Squared Tests. Introduction Two statistical techniques are presented. Both are used to analyze nominal data. –A goodness-of-fit test for a multinomial.
1 1 Slide © 2003 South-Western /Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Inference about the Difference Between the
1 1 Slide Mátgæði Kafli 11 í Newbold Snjólfur Ólafsson + Slides Prepared by John Loucks © 1999 ITP/South-Western College Publishing.
Chapter 12 Simple Regression Einföld aðfallsgreining ©
Chapter 14 Analysis of Categorical Data
12.3 Least Squares Procedure Aðferð minnstu fervika The Least-squares procedure obtains estimates of the linear equation coefficients b 0 and b 1, in the.
Chapter 16 Chi Squared Tests.
Probability & Statistics for Engineers & Scientists, by Walpole, Myers, Myers & Ye ~ Chapter 10 Notes Class notes for ISE 201 San Jose State University.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 14 Goodness-of-Fit Tests and Categorical Data Analysis.
Aaker, Kumar, Day Seventh Edition Instructor’s Presentation Slides
16/07/2015Dr Andy Brooks1 TFV0103 Tölfræði og fræðileg vinnubrögð Fyrirlestur 12 Kafli 9.1 Inference about the mean μ (σ unknown) Ályktun um meðaltalið.
Chi-Square Tests and the F-Distribution
Aaker, Kumar, Day Ninth Edition Instructor’s Presentation Slides
Chapter 9.3 (323) A Test of the Mean of a Normal Distribution: Population Variance Unknown Given a random sample of n observations from a normal population.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2005 Thomson/South-Western Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial Population Goodness of.
For testing significance of patterns in qualitative data Test statistic is based on counts that represent the number of items that fall in each category.
Chapter 9: Non-parametric Tests n Parametric vs Non-parametric n Chi-Square –1 way –2 way.
1 In this case, each element of a population is assigned to one and only one of several classes or categories. Chapter 11 – Test of Independence - Hypothesis.
Learning Objectives Copyright © 2002 South-Western/Thomson Learning Statistical Testing of Differences CHAPTER fifteen.
Section 10.2 Independence. Section 10.2 Objectives Use a chi-square distribution to test whether two variables are independent Use a contingency table.
: An alternative representation of level of significance. - normal distribution applies. - α level of significance (e.g. 5% in two tails) determines the.
Chapter Outline Goodness of Fit test Test of Independence.
Chapter 8 Estimation Mat og metlar ©. Estimator and Estimate Metill og mat estimator estimate An estimator of a population parameter is a random variable.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 11 Analyzing the Association Between Categorical Variables Section 11.2 Testing Categorical.
1 Chi-square Test Dr. T. T. Kachwala. Using the Chi-Square Test 2 The following are the two Applications: 1. Chi square as a test of Independence 2.Chi.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Chapter 14 – 1 Chi-Square Chi-Square as a Statistical Test Statistical Independence Hypothesis Testing with Chi-Square The Assumptions Stating the Research.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
Chi-Två Test Kapitel 6. Introduction Two statistical techniques are presented, to analyze nominal data. –A goodness-of-fit test for the multinomial experiment.
Section 10.2 Objectives Use a contingency table to find expected frequencies Use a chi-square distribution to test whether two variables are independent.
Chi Square Test of Homogeneity. Are the different types of M&M’s distributed the same across the different colors? PlainPeanutPeanut Butter Crispy Brown7447.
Test of independence: Contingency Table
Chapter 11 – Test of Independence - Hypothesis Test for Proportions of a Multinomial Population In this case, each element of a population is assigned.
St. Edward’s University
Chi-square test or c2 test
10 Chapter Chi-Square Tests and the F-Distribution Chapter 10
Chapter 18 Chi-Square Tests
Chapter 11 Chi-Square Tests.
Chapter 4. Inference about Process Quality
Chapter 12 Tests with Qualitative Data
Active Learning Lecture Slides
John Loucks St. Edward’s University . SLIDES . BY.
Chapter 9 Hypothesis Testing.
9 Tests of Hypotheses for a Single Sample CHAPTER OUTLINE
Econ 3790: Business and Economics Statistics
Chapter 11: Inference for Distributions of Categorical Data
Chapter 10 Analyzing the Association Between Categorical Variables
Chapter 13 Goodness-of-Fit Tests and Contingency Analysis
Chapter 11 Chi-Square Tests.
Chapter 13 – Applications of the Chi-Square Statistic
Lecture 41 Section 14.1 – 14.3 Wed, Nov 14, 2007
Hypothesis Testing Kenningapróf
CHI SQUARE TEST OF INDEPENDENCE
Analyzing the Association Between Categorical Variables
Hypothesis Tests for a Standard Deviation
Nonparametric Statistics Tölfræði sem ekki byggir á mati stika
Nonparametric Statistics Tölfræði sem ekki byggir á mati stika
Chapter 13 Goodness-of-Fit Tests and Contingency Analysis
Chapter Outline Goodness of Fit test Test of Independence.
Chapter 11 Chi-Square Tests.
Quadrat sampling & the Chi-squared test
Hypothesis Testing - Chi Square
Quadrat sampling & the Chi-squared test
Presentation transcript:

Goodness-of-Fit Tests and Contingency Tables Chapter 14 Goodness-of-Fit Tests and Contingency Tables Próf fyrir mátgæði og tengslatöflur

The Chi-Square Random Variable Chi-Square slembibreytan A random sample of n observations each of which can be classified into exactly one of K categories is selected. Denote the observed numbers in each category by O1, O2, . . ., OK. If the null hypothesis (H0) specifies probabilities 1, 2, . . ., K for an observation falling into each of these categories, the expected numbers in the categories under H0 would be Slembiúrtak ,með n athugunum sem hver fyrir sig flokkast í nákvæmlega einn af K flokkum, er valið. Táknum gildin sem fundin eru í hverjum flokki með O1, O2, . . ., OK. Ef núlltilgátan (H0) tilgreinir líkindin 1, 2, . . ., K á að athugun falli inn í sérhvern þessa flokka, væru væntigildi í flokkunum undir H0 eftirfarandi If the null hypothesis in true and the sample size is large enough so that the expected values are at least five, then the random variable associated with Ef núlltilgátan stenst og úrtaksstærðin er nægilega stór, svo væntigildin séu a.m.k. fimm, þá gildir um slembibreytuna sem byggirá eftirfarandi has, to a good approximation, a chi-square distribution with (K – 1) degrees of freedom. að hún hefur, við góða nálgun, chi-square dreifngu með (K-1) frígráðum.

A Goodness-of-Fit Test Próf fyrir mátgæði A goodness-of-fit test, of significance level , of H0 against the alternative that the specified probabilities are not correct is based on the decision rule Próf fyrir mátgæði, við marktækni Próf fyrir mátgæði, við marktæknistig , við H0 gegn valtilgátunni að tilgreind líkindi séu ekki rétt er byggð á ákvörðunarreglunni where 2 K-1,  is the number for which þar sem 2 K-1,  er gildið þar sem And the random variable 2 K-1 follows a chi-square distribution with (K – 1) degrees of freedom. Og slembibreytan 2 K-1 fylgir chi-square dreifingu með (K – 1) frígráðum.

Goodness-of-Fit Tests When Population Parameters are Estimated Próf fyrir mátgæði þegar þýðisstikar eru metnir Suppose that a null hypothesis specifies category probabilities that depend on the estimation (from the data) of m unknown population parameters. The appropriate goodness-of-fit test of the null hypothesis when population parameters are estimated is the same as that previously mentioned, except that the number of degrees of freedom for the chi-square random variable is Gerum ráð fyrir að núlltilgátan tilgreini flokk líkinda sem háð eru mati (gagna) m óþekktra þýðisstika. Viðeigandi próf fyrir mátgæði er það sama og áður var minnst á, nema að fjöldi frígráða fyrir chi-square slembibreytuna er Where K is the number of categories. Þar sem K er fjöldi flokka.

Bowman-Shelton Test for Normality Bowman-Shelton próf fyrir normal dreifingu The Bowman-Shelton Test for Normality is based on the closeness to 0 of the sample skewness and the closeness to 3 of the sample kurtosis. The test statistic is Bowman-Shelton próf fyrir normal dreifingu byggir á hve nálægt 0 úrtaksskekkjan er og hve nálægt 3 ferilris úrtaksins er. Prófgildið er It is known that as the number of sample observations becomes very large, this statistic has, under the null hypothesis that the population distribution is normal, a chi-square distribution with 2 degrees of freedom. The null hypothesis is, of course, rejected for large values of the test statistic. Vitað er að þegar fjöldi athugana í úrtakinu verður mjög mikill, þá hefur þetta prófgildi, undir núlltilgátunni að þýðisdreifingin sé normal, chi-squrae dreifingu með 2 frígráðum. Núlltilgátunni er, auðvitað, hafnað fyrir stór prófgildi.

r x c Contingency Table (Table 14.8) Attribute B Attribute A 1 2 . . . C Totals . r O11 O21 Or1 C1 O12 O22 Or2 C2 … O1c O2c Orc Cc R1 R2 Rr n

Chi-Square Random Variable for Contingency Tables Chi-Square slembreytur fyrir tengslatöflur It can be shown that under the null hypothesis the random variable associated with Hægt er að sýna að undir núlltilgátunni, þá gildir um slembibreytuna sem byggir á eftirfarandi has, to a good approximation, a chi-square distribution with (r – 1)(c – 1) degrees of freedom. The approximation works well if each of the estimated expected numbers Eij is at least 5. Sometimes adjacent classes can be combined in order to meet this assumption. að hún hefur, við góða nálgun, chi-square dreifngu með (r - 1) (c - 1) frígráðum. Nálgunin virkar vel ef sérhvert metið væntigildi Eij er a.m.k. 5. Stundum geta aðliggjandi (samliggjandi, aðlægir) flokkar verið sameinaðir til að uppfylla þessa forsendu.

A Test of Association in Contingency Tables Próf fyrir tengslum í tengslatöflum Suppose that a sample of n observations is cross classified according to two attributes in an r x c contingency table. Denote by Oij the number of observations in the cell that is in the ith row and the jth column. If the null hypothesis is Gerum ráð fyrir að úrtak með n athugunum sé víxlflokkað byggt á tveimur flokkunarbreytum í r x c tengslatöflu. Táknum með Oij fjölda athugana í flokk sem er í i línu og j dálk (súlu). Ef núlltilgátaner H0 : Engin tengsl eru milli flokkunarbreytanna tveggja í þýðinu The estimated expected number of observations in this cell, under H0, is Þá er metil væntigildi athugana í þessum flokk, undir H0 , eftirfarandi Where Ri and Cj are the corresponding row and column totals. A test of association at a significance level  is based on the following decision rule Þar sem Ri og Cj eru samsvarandi samtala fyrir línur og dálka.

Key Words Bowman-Shelton Test for Normality 2 Random Variable Goodness-of-Fit Tests Specified Parameters Unknown Parameters Poisson Distribution Normal Distribution Kurtosis Skewness Test of Association