iRNA-PseU: Identifying RNA pseudouridine sites

Slides:



Advertisements
Similar presentations
Molecular Therapy - Nucleic Acids
Advertisements

Assessment of HaloPlex Amplification for Sequence Capture and Massively Parallel Sequencing of Arrhythmogenic Right Ventricular Cardiomyopathy–Associated.
One-Step Ligation on RNA Amplification for the Detection of Point Mutations  Lei Zhang, Jingjing Wang, Mia Coetzer, Stephanie Angione, Rami Kantor, Anubhav.
Oligonucleotide Delivery to the Lung: Waiting to Inhale
Genome-editing Technologies for Gene and Cell Therapy
Pei-Chen Peng, Md. Abul Hassan Samee, Saurabh Sinha 
Molecular Therapy - Nucleic Acids
Volume 112, Issue 7, Pages (April 2017)
Structural Effects of an LQT-3 Mutation on Heart Na+ Channel Gating
Tissue-specific Calibration of Real-time PCR Facilitates Absolute Quantification of Plasmid DNA in Biodistribution Studies  Joan K Ho, Paul J White, Colin.
A Tumor Sorting Protocol that Enables Enrichment of Pancreatic Adenocarcinoma Cells and Facilitation of Genetic Analyses  Zachary S. Boyd, Rajiv Raja,
Molecular Therapy - Nucleic Acids
Christopher Wostenberg, W.G. Noid, Scott A. Showalter 
Molecular Therapy - Nucleic Acids
From Static to Dynamic Risk Prediction: Time Is Everything
Volume 124, Issue 2, Pages (January 2006)
Hyeshik Chang, Jaechul Lim, Minju Ha, V. Narry Kim  Molecular Cell 
SeqSharp The Journal of Molecular Diagnostics
Brian K. Maples, Simon Gravel, Eimear E. Kenny, Carlos D. Bustamante 
Michael Adrian, Fernaldo Richtia Winnerdy, Brahim Heddi, Anh Tuân Phan 
Volume 92, Issue 1, Pages (January 2007)
Volume 23, Issue 10, Pages (October 2016)
Haiyan Dong, Ji Ma, Jie Wang, Zai-Sheng Wu, Patrick J Sinko, Lee Jia 
CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles
Jan Hoinka, Phuong Dao, Teresa M Przytycka 
Integrative Multi-omic Analysis of Human Platelet eQTLs Reveals Alternative Start Site in Mitofusin 2  Lukas M. Simon, Edward S. Chen, Leonard C. Edelstein,
Molecular Therapy - Nucleic Acids
Biased Allelic Expression in Human Primary Fibroblast Single Cells
Hyeshik Chang, Jaechul Lim, Minju Ha, V. Narry Kim  Molecular Cell 
Molecular Therapy - Nucleic Acids
IRNA-PseColl: Identifying the Occurrence Sites of Different RNA Modifications by Incorporating Collective Effects of Nucleotides into PseKNC  Pengmian.
Volume 21, Issue 10, Pages (October 2013)
Volume 49, Issue 2, Pages (January 2013)
Genome-editing Technologies for Gene and Cell Therapy
Volume 5, Issue 5, Pages (December 2013)
A Three–Single-Nucleotide Polymorphism Haplotype in Intron 1 of OCA2 Explains Most Human Eye-Color Variation  David L. Duffy, Grant W. Montgomery, Wei.
Molecular Convergence of Neurodevelopmental Disorders
Nucleotide Effects on the Structure and Dynamics of Actin
New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization  Abdullah Ozer, John M Pagano,
GFP to BFP Conversion: A Versatile Assay for the Quantification of CRISPR/Cas9- mediated Genome Editing  Astrid Glaser, Bradley McColl, Jim Vadolas  Molecular.
847. Eradication of Therapy-Resistant Human Prostate Tumors Using an Ultrasound Guided Site-Specific Cancer Terminator Virus Delivery Approach    Molecular.
Comparative Molecular Dynamics Simulation Studies of Protegrin-1 Monomer and Dimer in Two Different Lipid Bilayers  Huan Rui, Jinhyuk Lee, Wonpil Im 
Katy Hanlon, Lorna W. Harries, Sian Ellard, Claudius E. Rudin 
Wei-Yun Lai, Bo-Tsang Huang, Jen-Wei Wang, Pei-Ying Lin, Pan-Chyr Yang 
Olivier Humbert, Nancy Maizels  Molecular Therapy - Nucleic Acids 
521. Multiplex Genome Editing of TCR°/CD52 Genes as a Platform for “Off the Shelf” Adoptive T-Cell Immunotherapies    Molecular Therapy  Volume 22, Pages.
Volume 107, Issue 5, Pages (September 2014)
Sequence and Crowding Effects in the Aggregation of a 10-Residue Fragment Derived from Islet Amyloid Polypeptide  Eva Rivera, John Straub, D. Thirumalai 
Tsuyoshi Terakawa, Shoji Takada  Biophysical Journal 
Statistical Issues in Longitudinal Data Analysis for Treatment Efficacy Studies in the Biomedical Sciences  Chunyan Liu, Timothy P Cripe, Mi-Ok Kim  Molecular.
Volume 108, Issue 1, Pages (January 2015)
Molecular Therapy  Volume 18, Pages S260-S261 (May 2010) DOI: /S (16)
Volume 111, Issue 4, Pages (August 2016)
Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping  Elham Hamed, Sinan Keten  Biophysical.
Wei Chen, Pengmian Feng, Hui Yang, Hui Ding, Hao Lin, Kuo-Chen Chou 
Molecular Therapy - Nucleic Acids
Fiona T van den Berg, John J Rossi, Patrick Arbuthnot, Marc S Weinberg 
Molecular Therapy - Nucleic Acids
Nathan D. Montgomery, Sara R. Selitsky, Nirali M. Patel, D
Molecular Therapy - Nucleic Acids
Molecular Therapy - Nucleic Acids
Xingyu Wang, Can Li, Xiaomeng Gao, Jing Wang, Xingguo Liang 
Molecular Therapy - Nucleic Acids
Volume 95, Issue 7, Pages (October 2008)
Thomas J Cradick, Peng Qiu, Ciaran M Lee, Eli J Fine, Gang Bao 
A Critical Residue Selectively Recruits Nucleotides for T7 RNA Polymerase Transcription Fidelity Control  Baogen Duan, Shaogui Wu, Lin-Tai Da, Jin Yu 
Volume 26, Issue 11, Pages (November 2018)
Off-target Effects in CRISPR/Cas9-mediated Genome Engineering
Yogesh K. Gupta, Deepak T. Nair, Robin P. Wharton, Aneel K. Aggarwal 
Loss of LKB1 Kinase Activity in Peutz-Jeghers Syndrome, and Evidence for Allelic and Locus Heterogeneity  Hamid Mehenni, Corinne Gehrig, Jun-ichi Nezu,
Presentation transcript:

iRNA-PseU: Identifying RNA pseudouridine sites Wei Chen, Hua Tang, Jing Ye, Hao Lin, Kuo-Chen Chou  Molecular Therapy - Nucleic Acids  Volume 5, (January 2016) DOI: 10.1038/mtna.2016.37 Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Figure 1 Illustration to show the pseudouridine (Ψ) modification. Its formation is catalyzed by the Ψ synthase. Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Figure 2 A comparison between predicted results of iRNA-PseU and experimental results on a 200-nt (from 452168 to 452367) genomic region of chromosome XII from S. cerevisiae. The top panel shows the probability values calculated by iRNA-PseU. The middle panel shows the experimental results determined by using the Pseudo-Seq technique, where the six known Ψ sites are highlighted with red rectangles.7 The dashed blue line shows the consistency between the predicted result and the experimental one. The lower panel shows the relative genomic coordinate. Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Figure 3 A graphical illustration to show the performance of iRNA-PseU by means of the receiver operating characteristic curve. Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Figure 4 An in-depth analysis into the contributions of three models: the orange histogram stands for the accuracy score obtained by the model trained based on the nucleotide density in identifying Ψ sites; the green one for that based on the nucleotide chemical properties; and the blue for that by combing the above two models. See the text for more explanation. Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Figure 5 Schematic drawing to show how to use the flexible scaled window along an RNA sequence to collect the potential Ψ-site-containing sequence samples. Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Figure 6 Schematic illustration to show the mirror image of (a) the 5’ RNA terminal segment, and (b) the 3’ RNA terminal segment. The symbol ⇔ represents a mirror, and the real RNA segment is colored in blue, while its mirror image in red. Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Figure 7 A histogram to show the overall accuracy obtained by the proposed predictor in identifying Ψ site with different ξ values. The accuracy for H.sapiens or M. musculus reaches a peak when ξ = 10, while that for S. cerevisiae reaches a peak when ξ = 15. Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Figure 8 Illustration to show the structure of paired nucleic acid residues. The left panel is the A-U pair bonded to each other with two hydrogen bonds; the right panel is the G-C pair with three hydrogen bonds. Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Figure 9 A semi-screenshot for the top-page of the iRNA-PseU web-server at http://lin.uestc.edu.cn/server/ iRNA-PseU. Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions

Molecular Therapy - Nucleic Acids 2016 5, DOI: (10.1038/mtna.2016.37) Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy Terms and Conditions