Mitochondrial Proteostatic Collapse Leads to Hypoxic Injury

Slides:



Advertisements
Similar presentations
Wallerian Degeneration Is Executed by an NMN-SARM1-Dependent Late Ca2+ Influx but Only Modestly Influenced by Mitochondria  Andrea Loreto, Michele Di Stefano,
Advertisements

Volume 16, Issue 13, Pages (July 2006)
Axons Degenerate in the Absence of Mitochondria in C. elegans
Volume 18, Issue 5, Pages (May 2010)
Abdominal-B Neurons Control Drosophila Virgin Female Receptivity
Type 3 Deiodinase in Hypoxia: To Cool or to Kill?
Cellular Stress Induces a Protective Sleep-like State in C. elegans
Volume 27, Issue 22, Pages e5 (November 2017)
Volume 25, Issue 19, Pages (October 2015)
Volume 9, Issue 6, Pages (December 2014)
Volume 85, Issue 2, Pages (January 2015)
Volume 23, Issue 20, Pages (October 2013)
Nimish Khanna, Yan Hu, Andrew S. Belmont  Current Biology 
Volume 23, Issue 6, Pages (December 2012)
Volume 15, Issue 12, Pages (June 2005)
The Vacuolar H+-ATPase Mediates Intracellular Acidification Required for Neurodegeneration in C. elegans  Popi Syntichaki, Chrysanthi Samara, Nektarios.
Volume 26, Issue 6, Pages e5 (December 2017)
Volume 43, Issue 2, Pages e7 (October 2017)
Volume 24, Issue 8, Pages (April 2014)
Vasudha Srivastava, Douglas N. Robinson  Current Biology 
O-GlcNAc Signaling Orchestrates the Regenerative Response to Neuronal Injury in Caenorhabditis elegans  Daniel G. Taub, Mehraj R. Awal, Christopher V.
Volume 25, Issue 2, Pages (January 2015)
Volume 16, Issue 9, Pages (August 2016)
Volume 22, Issue 23, Pages (December 2012)
Children, but Not Chimpanzees, Prefer to Collaborate
C. Elegans Are Protected from Lethal Hypoxia by an Embryonic Diapause
A Super-Assembly of Whi3 Encodes Memory of Deceptive Encounters by Single Cells during Yeast Courtship  Fabrice Caudron, Yves Barral  Cell  Volume 155,
Multicellular development in a choanoflagellate
Volume 22, Issue 10, Pages (March 2018)
An AP2 Transcription Factor Is Required for a Sleep-Active Neuron to Induce Sleep-like Quiescence in C. elegans  Michal Turek, Ines Lewandrowski, Henrik.
Hypoxic Preconditioning Requires the Apoptosis Protein CED-4 in C
Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy
Volume 88, Issue 4, Pages (November 2015)
Volume 20, Issue 2, Pages (August 2016)
Volume 25, Issue 14, Pages (July 2015)
The Timing of Midzone Stabilization during Cytokinesis Depends on Myosin II Activity and an Interaction between INCENP and Actin  Jennifer Landino, Ryoma.
Volume 26, Issue 18, Pages (September 2016)
Type 3 Deiodinase in Hypoxia: To Cool or to Kill?
An AP2 Transcription Factor Is Required for a Sleep-Active Neuron to Induce Sleep-like Quiescence in C. elegans  Michal Turek, Ines Lewandrowski, Henrik.
Volume 15, Issue 7, Pages (April 2005)
The C. elegans Glycopeptide Hormone Receptor Ortholog, FSHR-1, Regulates Germline Differentiation and Survival  Saeyoull Cho, Katherine W. Rogers, David S.
Centrosome Size: Scaling Without Measuring
Volume 16, Issue 9, Pages (August 2016)
Wallerian Degeneration Is Executed by an NMN-SARM1-Dependent Late Ca2+ Influx but Only Modestly Influenced by Mitochondria  Andrea Loreto, Michele Di Stefano,
Volume 22, Issue 11, Pages (March 2018)
Bonnie Chu, Vincent Chui, Kevin Mann, Michael D. Gordon 
Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance  Valeria R. Fantin, Julie St-Pierre,
Volume 21, Issue 6, Pages (November 2017)
B. subtilis GS67 Protects C
Volume 14, Issue 7, Pages (February 2016)
Tyson J. Edwards, Marc Hammarlund  Cell Reports 
Xin Xie, Tomas Venit, Nizar Drou, Piergiorgio Percipalle
Suhong Xu, Andrew D. Chisholm  Current Biology 
Insulin, cGMP, and TGF-β Signals Regulate Food Intake and Quiescence in C. elegans: A Model for Satiety  Young-jai You, Jeongho Kim, David M. Raizen,
Volume 22, Issue 23, Pages (December 2012)
Distinct Nuclear and Cytoplasmic Functions of the S
Andrea Gloria-Soria, Ricardo B.R. Azevedo  Current Biology 
Volume 26, Issue 6, Pages e5 (December 2017)
Jessica L. Feldman, James R. Priess  Current Biology 
Volume 165, Issue 5, Pages (May 2016)
Volume 16, Issue 13, Pages (July 2006)
Volume 22, Issue 10, Pages (March 2018)
Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death  Jasmina Lovrić,
Taro Ohkawa, Matthew D. Welch  Current Biology 
Lixian Zhong, Richard Y. Hwang, W. Daniel Tracey  Current Biology 
Toll-like Receptor Signaling Promotes Development and Function of Sensory Neurons Required for a C. elegans Pathogen-Avoidance Behavior  Julia P. Brandt,
Volume 24, Issue 9, Pages (May 2014)
Swapna Kollu, Samuel F. Bakhoum, Duane A. Compton  Current Biology 
KNL1/Spc105 Recruits PP1 to Silence the Spindle Assembly Checkpoint
Nimish Khanna, Yan Hu, Andrew S. Belmont  Current Biology 
Presentation transcript:

Mitochondrial Proteostatic Collapse Leads to Hypoxic Injury Daniel M. Kaufman, C. Michael Crowder  Current Biology  Volume 25, Issue 16, Pages 2171-2176 (August 2015) DOI: 10.1016/j.cub.2015.06.062 Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 1 Mitochondrial Proteostasis Is Disrupted by Hypoxia (A and B) Intestinal mitochondria with mitochondrially targeted GFP (zcIs17) exhibit severe pathology following sublethal (12 hr) hypoxia; scale bar 4 μm; ∗p < 0.05 (Fisher’s exact test). (C and D) Intestinal mitochondria display reduced TMRE and MitoTracker Deep Red colocalization following sublethal (12 hr) hypoxia, indicating mitochondrial depolarization; scale bar 4 μm; ∗p < 0.05 (chi-square test). (E and F) Sublethal (12 hr) hypoxia leads to the appearance of intramitochondrial aggregates (arrows); scale bar 400 nm; ∗∗∗∗p < 0.001 (Fisher’s exact test). (G) Percent of images displaying mitochondrial localization of 1,8-ANS following mild (4 hr) hypoxia; ∗∗∗∗p < 0.001 (Fisher’s exact test). (H) Percent of total mitochondrial protein insoluble in Triton X-100; bars are mean ± SEM; ∗∗p < 0.01 (paired t test). Current Biology 2015 25, 2171-2176DOI: (10.1016/j.cub.2015.06.062) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 2 Activation of the mtUPR Is Hypoxia Protective (A) Induction of the mtUPR reporter, zcIs13[Phsp-6::GFP], following mild (4 hr) hypoxia; each point represents total fluorescence of one worm; bars are mean ± SD. (B) Survival of wild-type (N2) and mtUPR deletion mutants on control (L4440) and cco-1 RNAi following 20 hr of hypoxia; bars are mean ± SEM. (C) Survival of N2 and mtUPR mutants or RNAi, treated with control or 5 μg/ml doxycycline 24 hr prior to 18 hr of hypoxia; bars are mean ± SEM. (D) Survival of N2 worms on control or indicated RNAi after 18 hr of hypoxia; bars are mean ± SEM. (E) Oxygen consumption rate (μmol/mg protein∗min) of N2 worms raised on control or indicated RNAi; bars are mean ± SEM. (F) Survival of N2 and atfs-1(gf) alleles following 20 hr of hypoxia; bars are mean ± SEM. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗∗p < 0.001; ns, no significant difference by Student’s t test (A), paired t test (B and C), or one-way ANOVA with Bonferroni correction (D–F). A.U., arbitrary units. Current Biology 2015 25, 2171-2176DOI: (10.1016/j.cub.2015.06.062) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 3 mtUPR Protects before and after Global and Focal Hypoxic Injury (A) Survival of worms with control or doxycycline (10 μg/ml) solutions applied only after 18 hr of hypoxia; bars are mean ± SEM. (B and C) Survival or locomotion deficits (Unc) of focally injured worms with control or doxycycline (10 μg/ml) solutions 24 hr before (B) or immediately after (C) hypoxia. rars-1(gc47), control; rars-1(gc47);gcSi2[Pmyo-2::YFP::unc-54 3′ UTR], transformation control; rars-1(gc47);gcIs3[Pmyo-2::rars-1(+)::unc-54 3′ UTR], pharyngeal myocytes; rars-1(gc47);gcSi4[Punc-47::rars-1(+)::unc-54 3′ UTR], GABA neurons. (D and E) Treatment with doxycycline both before (D) and after (E) hypoxia prevents hypoxic mitochondrial pathology. (F) cco-1 RNAi partially prevents appearance of intramitochondrial aggregates following sublethal (12 hr) hypoxia (L4440 data reproduced from Figure 1E). ∗p < 0.05; ∗∗p < 0.01; ∗∗∗∗p < 0.001; ns, no significant difference by Student’s t test (A) or chi-square test (B–F). Current Biology 2015 25, 2171-2176DOI: (10.1016/j.cub.2015.06.062) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 4 Cell Non-autonomous mtUPR Induction Is Hypoxia Protective (A) Organismal survival of sid-1(qt9) (control) relative to AGD1079 (neuronal mtUPR induction) and AGD324 (intestinal induction) following 18 hr of hypoxia; ∗p < 0.05; ∗∗p < 0.01 (Student’s t test). (B) Following sublethal (12 hr) hypoxia, pharyngeal pumping rate in sid-1(qt9) controls compared to strains with neuronal (AGD1079) and intestinal (AGD324) mtUPR induction; bars are mean ± SD. ∗∗∗∗p < 0.001 (Student’s t test). (C) Following sublethal (12 hr) hypoxia, percent of worm with severely abnormal intestinal mitochondrial morphology in control (sid-1(qt9);zcIs17) or neuronal mtUPR induction (sid-1(qt9);zcIs17;uthIs375) strains; ∗∗∗∗p < 0.001 (Fisher’s exact test). Current Biology 2015 25, 2171-2176DOI: (10.1016/j.cub.2015.06.062) Copyright © 2015 Elsevier Ltd Terms and Conditions