Astrochemical modeling of Planck cold clump G

Slides:



Advertisements
Similar presentations
Astrochemistry Panel Members: Jacqueline Keane Hideko Nomura Ted Bergin Tatsuhiko Hasegawa Karin Öberg Yi-Jehng Kuan.
Advertisements

The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
HCN, HNC, CN et al. in dense depleted cores Malcolm Walmsley (Arcetri and Dublin) With thanks to Marco Padovani and Pierre Hily-Blant.
Abundance and Distribution of the HNCS/HSCN isomer pair
Jeong-Eun Lee Kyung Hee University University of Texas at Austin.
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
High resolution (sub)millimetre studies of the chemistry of low-mass protostars Jes Jørgensen (CfA) Fredrik Schöier (Stockholm), Ewine van Dishoeck (Leiden),
Low-Mass Star Formation in a Small Group, L1251B Jeong-Eun Lee UCLA.
Comets with ALMA N. Biver, LESIA, Paris Observatory I Comets composition Chemical investigation and taxonomy Monitoring of comet outgassing II Mapping.
Chemistry in low-mass star forming regions: ALMA ’ s contribution Yuri Aikawa (Kobe Univ.) Collaborators: Hideko Nomura (Kobe Univ.) Hiroshi Koyama (Kobe.
Heiles meeting, Sep 04 Where is the Atomic Carbon in Ophiuchus Di Li Paul Goldsmith Gary Melnick and SWAS team.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
SMA Observations of High Mass Protostellar Objects (HMPOs) Submm Astronomy in Era of SMA June 15, 2005 Crystal Brogan (U. of Hawaii) Y. Shirley (NRAO),
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Complex organic molecules in hot corinos
WHAT MOLECULAR ABUNDANCES CAN TELL US ABOUT THE DYNAMICS OF STAR FORMATION Konstantinos Tassis Collaborators: Karen Willacy, Harold Yorke, Neal Turner.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Spectral Line Survey with SKA Satoshi Yamamoto and Nami Sakai Department of Physics, The Univ. of Tokyo Tomoya Hirota National Astronomical Observatory.
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Gas and Dust (Interstellar) Astrochemistry.
Collaborators : Valentine Wakelam (supervisor)
The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
Supervisors: Maria Cunningham (UNSW), James Urquhart (CSIRO) Michael Burton (UNSW) Collaborators: Nadia Lo (UNSW/CSIRO), Bhaswati Mookerjea (Tata Institute)
Dark Cloud Modeling of the Abundance Ratio of Ortho-to-Para Cyclic C 3 H 2 In Hee Park & Eric Herbst The Ohio State University Yusuke Morisawa & Takamasa.
Line emission by the first star formation Hiromi Mizusawa(Niigata University) Collaborators Ryoichi Nishi (Niigata University) Kazuyuki Omukai (NAOJ) Formation.
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
INAF-Osservatorio Astrofisico di Arcetri
Studying Infall Neal J. Evans II.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Black hole accretion history of active galactic nuclei 曹新伍 中国科学院上海天文台.
Chemistry and dynamics of the pulsating starless core Barnard 68 Matt Redman National University of Ireland, Galway Matt Redman NUI Galway.
Searching for massive pre-stellar cores through observations of N 2 H + and N 2 D + (F. Fontani 1, P. Caselli 2, A. Crapsi 3, R. Cesaroni 4, J. Brand 1.
Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team) NRO UM.
Star Formation and H2 in Damped Lya Clouds
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
Some Chemistry in Assorted Star-forming Regions Eric Herbst.
R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl.
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
Complex Organic Molecules formation on Interstellar Grains Qiang Chang Xinjiang Astronomical Observatory Chinese Academy of Sciences April 22, 2014.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
The CO SED and molecular gas properties in Early-Type Galaxies (ETGs)
A Search for Interstellar H2DO+
Fumitaka Nakamura (National Astronomical Observatory of Japan)
Inside a typical astrochemical model
Deuterium-Bearing Molecules in Dense Cores
On the Formation of Molecules on Interstellar Grains
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
Filamentary Structures Traced by IRDCs
The MALT90 survey of massive star forming regions
OBSERVATIONS OF BINARY PROTOSTARS
High Resolution Submm Observations of Massive Protostars
HCO+ in the Helix Nebula
The “TOP” “SCOPE”: Follow-up surveys toward Planck Galactic cold clumps with ground-based radio telescopes Tie Liu (KASI fellow) Korea Astronomy and Space.
Molecules: Probes of the Interstellar Medium
星际介质中预生物分子的化学建模研究 Chemical Modeling Studies of Interstellar Prebiotic Molecules 全冬晖 July 28th, 2018.
Interstellar Ice Formation on Dust Grains
Gas of Planck Cold Dust Clumps
Jeongkwan Yoon (UNIST CAL) 3rd CHEA Workshop Jan 16th, Gyeongju
Chemical evolution of N2H+ in massive star-forming regions
HNCO: A Molecule Traces Low-velocity Shocks
Chemical evolution of HC3N(乙炔腈) in dense molecular clouds
Presentation transcript:

Astrochemical modeling of Planck cold clump G224.4-0.6 葛继兴1, 何金华2,3 & Diego Mardones1 @ TOP-SCOPE project 1 智利大学天文系 2 云南天文台 3 中智天文中心 星际物理与化学 昆明 2018-07-29 in preparation. gejixing666@gmail.com

Outline Background Observed molecular distributions in G224.4-0.6 Physical parameters of G224.4-0.6 Chemical models (0-D) Comparison with observations 5.1 1-D model 5.2 2-D model 5.3 0-D model 6. Discussions and conclusions

Planck survey: 13188 Planck cold clumps (Tdust<14K). TOP-SCOPE project TRAO Observations of PGCCs (TOP) TRAO 14 m telescope 2000 PGCC sources (blue dots) selected for TOP To find CO dense clumps, to investigate the roles of turbulence, magnetic fields and gravity in structure formation SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE) East Asia Observatory (EAO) JCMT 15m 850um 1000 PGCC sources (magenta dots) selected for SCOPE to obtain a census of dense clumps distributed in widely different environments; to study the roles of filaments in dense core formation; to investigate dust properties; and to detect rare populations of dense clumps Liu … Ge … 2018, ApJS.

Joint surveys and follow-up observations e.g., SMT 10-m, KVN 21-m, NRO 45-m, & SMA (Liu et al. 2016; Tatematsu et al. 2017). 13 PGCCs, NH3, HNC,HC3N, CCS, N2H+, N2D+ (Tatematsu et al. 2017) Chemical Evolution Factor (CEF) Deuterium fractionation

2. Observed molecular distributions in G224.4-0.6 CCS HC3N N2H+ CCS peak HC3N peak N2H+ peak

3. Physical parameters of G224.4-0.6 Plummer-like function (Plummer 1911).

4. Chemical models Single-point gas-grain model (ggchem): reaction network : gas phase, dust surface, accretion and desoprtion. ~ 2000 species + 50000 reactions (13C- and D-bearing species) Physical parameters: density, extinction, gas (dust) temperature and interstellar radiation field. + + gas temperature 15K (Tatematsu et al., 2017) dust temperature 11K (Planck 2016)

5. Comparison with observations 5.1 1-D model: physical parameters

5. Comparison with observations 5.1 1-D model: the chemical age of G224.4-0.6 G224S G224NE DCCS + DHC3N DCCS + DHC3N ~3.0e+4 year ~4.5e+4 year

Off-center CCS peak ???

5. Comparison with observations 5.2 2-D model: the off-center local peak of CCS

CCS and HC3N peaks occur at 4e4 year because the depletion. t(1e6 cm-3)~1.7e4 year  C1 & C2 t(5e5 cm-3)~3.5e4 year  C3 t(1e5 cm-3)~1.7e5 year  P N2H+ distribution is consistent with observations. But it’s not a good tracer of the chemical age . Ring-like distributions of CCS and HC3N -> High resolution observations Center: depletion Edge: C+ + CCS -> C2S+ + C

5. Comparison with observations 5.3 0-D model: abundance and abundance ratios G224NE/G224S: 106 cm-3, 90 mag G224NE G224S

6. Discussions and conclusions Marsh et al., 2017 Density 1e4, 1e5, 1e6 Temperature 10, 20 K Extinction

6. Discussions and conclusions ??? External radiation field + Dust-to-gas mass ratio depletion Chemical age ~ 3e4-5e4 year Liseau et al. 2015.

Thanks!