AMPK and SNF1: Snuffing Out Stress

Slides:



Advertisements
Similar presentations
AMPK—Sensing Energy while Talking to Other Signaling Pathways
Advertisements

D. Grahame Hardie, Fiona A. Ross, Simon A. Hawley  Chemistry & Biology 
R.Ian Menz, John E. Walker, Andrew G.W. Leslie  Cell 
Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy  Vladimir Rogov, Volker Dötsch,
Sonja Schmid, Thorsten Hugel  Molecular Cell 
Structural Basis of DNA Recognition by p53 Tetramers
A Fence-like Coat for the Nuclear Pore Membrane
Volume 8, Issue 3, Pages (September 2001)
Fulvia Bono, Judith Ebert, Esben Lorentzen, Elena Conti  Cell 
Molecular Model of the Human 26S Proteasome
Volume 124, Issue 1, Pages (January 2006)
Volume 9, Issue 5, Pages (May 2001)
Volume 9, Issue 1, Pages (January 2009)
Chaperone-Assisted Crystallography with DARPins
Decoy Strategies: The Structure of TL1A:DcR3 Complex
Volume 18, Issue 11, Pages (November 2010)
Volume 34, Issue 4, Pages (May 2009)
Volume 28, Issue 3, Pages (November 2007)
Volume 19, Issue 1, Pages (January 2011)
Structure of the Endonuclease Domain of MutL: Unlicensed to Cut
Daniel Garcia, Reuben J. Shaw  Molecular Cell 
AMPK—Sensing Energy while Talking to Other Signaling Pathways
Choel Kim, Cecilia Y. Cheng, S. Adrian Saldanha, Susan S. Taylor  Cell 
Structure of CheA, a Signal-Transducing Histidine Kinase
Volume 4, Issue 5, Pages (November 1999)
The Ribosome Emerges from a Black Box
Volume 28, Issue 6, Pages (December 2007)
Volume 21, Issue 11, Pages (November 2013)
Volume 124, Issue 5, Pages (March 2006)
Through Ancient Rings Thread Programming Strings
Volume 90, Issue 1, Pages (July 1997)
The Crystal Structure of the Costimulatory OX40-OX40L Complex
Structure of the Tie2 RTK Domain
Daniel Peisach, Patricia Gee, Claudia Kent, Zhaohui Xu  Structure 
The Unfolding Story of a Redox Chaperone
Volume 91, Issue 5, Pages (November 1997)
A Drug-Drug Interaction Crystallizes a New Entry Point into the UPR
Volume 8, Issue 5, Pages (November 2001)
Volume 16, Issue 12, Pages (September 2016)
Mark Del Campo, Alan M. Lambowitz  Molecular Cell 
A Different Look for AB5 Toxins
Crystal Structure of the N-Terminal Domain of the Secretin GspD from ETEC Determined with the Assistance of a Nanobody  Konstantin V. Korotkov, Els Pardon,
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Volume 23, Issue 6, Pages (June 2015)
Volume 21, Issue 4, Pages (April 2013)
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
D. Grahame Hardie, Fiona A. Ross, Simon A. Hawley  Chemistry & Biology 
Huiying Li, Michael R. Sawaya, F. Robert Tabita, David Eisenberg 
Volume 85, Issue 5, Pages (May 1996)
Gymnastics of Molecular Chaperones
The manifold of vitamin B6 dependent enzymes
Daniel Garcia, Reuben J. Shaw  Molecular Cell 
E.Radzio Andzelm, J Lew, S Taylor  Structure 
Structural Insight into AMPK Regulation: ADP Comes into Play
Volume 21, Issue 11, Pages (November 2013)
Volume 14, Issue 6, Pages (June 2006)
Volume 91, Issue 5, Pages (November 1997)
Volume 9, Issue 2, Pages (February 2001)
Volume 21, Issue 4, Pages (April 2013)
A New Angle on TCR Activation
Tag-Team SUMO Wrestling
How to Assemble a Capsid
Volume 23, Issue 9, Pages (September 2015)
It Takes Two Binding Sites for Calcineurin and NFAT to Tango
Three protein kinase structures define a common motif
Brett K. Kaiser, Matthew C. Clifton, Betty W. Shen, Barry L. Stoddard 
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
Volume 7, Issue 2, Pages R19-R23 (February 1999)
Volume 26, Issue 3, Pages R100-R101 (February 2016)
Structural Switch of the γ Subunit in an Archaeal aIF2αγ Heterodimer
Presentation transcript:

AMPK and SNF1: Snuffing Out Stress D. Grahame Hardie  Cell Metabolism  Volume 6, Issue 5, Pages 339-340 (November 2007) DOI: 10.1016/j.cmet.2007.10.001 Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 1 Structures of AMPK and Its Homologs (A) Cartoon view of the S. cerevisiae structure (Protein Data Bank ID code 2QLV) illustrating the general layout of the secondary structural elements. The dotted lines represent two of the three axes about which the cystathionine β-synthase (CBS) motifs of the γ subunits show approximate two-fold symmetry. The three-stranded β sheet connecting the β and γ subunits, the solvent-accessible channel through the γ subunit, and the clefts where AMP binds in mammalian AMPK between CBS1/CBS2 (N-terminal Bateman domain) and CBS3/CBS4 (C-terminal Bateman domain) are indicated. Key: α-CTD and α (460–498), Snf1 C-terminal domain and residues 460–498 (shown in yellow); β-CTD, Sip2 C-terminal domain (red); β-GBD, Sip2 glycogen-binding domain (green); γ-NTD, Snf4 N-terminal domain (tan); γ-CBS1/2/3/4, Snf4 CBS motifs 1/2/3/4 (1, light blue; 2, purple; 3, dark blue; 4, orange). (B) “Stick” view (C atoms shown in green; N, blue; P, orange; O, red) of AMP1 and AMP3 (in the CBS3:CBS4 cleft) and AMP2 (in the CBS1:CBS2 cleft) in the mammalian α1β2γ1 complex (PDB ID code 2V8Q). Basic residues (using γ2 numbering) that interact with the phosphate groups of AMP or ATP are also shown. Interestingly, H383 (in CBS2) interacts with AMP molecules bound to both Bateman domains, while R302 (in CBS1) interacts with AMP in the other Bateman domain. R384 does not interact with AMP but does interact with ATP when it replaces AMP2 (Xiao et al., 2007). Figures were generated using MacPyMOL. Cell Metabolism 2007 6, 339-340DOI: (10.1016/j.cmet.2007.10.001) Copyright © 2007 Elsevier Inc. Terms and Conditions