Volume 97, Issue 9, Pages (November 2009)

Slides:



Advertisements
Similar presentations
Volume 93, Issue 7, Pages (October 2007)
Advertisements

Volume 101, Issue 7, Pages (October 2011)
Volume 88, Issue 2, Pages (February 2005)
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Geometrical Properties of Gel and Fluid Clusters in DMPC/DSPC Bilayers: Monte Carlo Simulation Approach Using a Two-State Model  István P. Sugár, Ekaterina.
Kinetic Hysteresis in Collagen Folding
Volume 98, Issue 3, Pages (February 2010)
Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament
Lars Kjaer, Lise Giehm, Thomas Heimburg, Daniel Otzen 
Urea-Induced Unfolding of the Immunity Protein Im9 Monitored by spFRET
Volume 102, Issue 8, Pages (April 2012)
Molecular Dynamics Free Energy Calculations to Assess the Possibility of Water Existence in Protein Nonpolar Cavities  Masataka Oikawa, Yoshiteru Yonetani 
Refolding of a High Molecular Weight Protein: Salt Effect on Collapse
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Effect of Spontaneous Twist on DNA Minicircles
Volume 108, Issue 3, Pages (February 2015)
Volume 113, Issue 12, Pages (December 2017)
Volume 83, Issue 4, Pages (October 2002)
A Consistent Experimental and Modeling Approach to Light-Scattering Studies of Protein-Protein Interactions in Solution  D. Asthagiri, A. Paliwal, D.
Volume 103, Issue 12, Pages (December 2012)
Serapion Pyrpassopoulos, Henry Shuman, E. Michael Ostap 
Volume 96, Issue 4, Pages (February 2009)
Volume 106, Issue 6, Pages (March 2014)
Volume 99, Issue 8, Pages (October 2010)
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Volume 108, Issue 6, Pages (March 2015)
Jai A. Pathak, Rumi R. Sologuren, Rojaramani Narwal 
Volume 114, Issue 1, Pages (January 2018)
Volume 86, Issue 4, Pages (April 2004)
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Fast Motions of Key Methyl Groups in Amyloid-β Fibrils
Macromolecular Crowding Modulates Actomyosin Kinetics
A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations  Jianwen A. Feng,
Volume 99, Issue 8, Pages (October 2010)
Volume 109, Issue 5, Pages (September 2015)
Volume 105, Issue 10, Pages (November 2013)
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
The Arginine-Rich RNA-Binding Motif of HIV-1 Rev Is Intrinsically Disordered and Folds upon RRE Binding  Fabio Casu, Brendan M. Duggan, Mirko Hennig 
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Kinetic Hysteresis in Collagen Folding
Jiang Hong, Shangqin Xiong  Biophysical Journal 
Volume 109, Issue 3, Pages (August 2015)
Volume 98, Issue 11, Pages (June 2010)
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Volume 106, Issue 4, Pages (February 2014)
Thermodynamic Characterization of the Unfolding of the Prion Protein
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Congju Chen, Irina M. Russu  Biophysical Journal 
Translational Entropy and DNA Duplex Stability
A Mesoscale Model of DNA and Its Renaturation
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Fredrik Elinder, Michael Madeja, Hugo Zeberg, Peter Århem 
Volume 83, Issue 6, Pages (December 2002)
Allosteric Control of Syntaxin 1a by Munc18-1: Characterization of the Open and Closed Conformations of Syntaxin  Damian Dawidowski, David S. Cafiso 
Volume 101, Issue 7, Pages (October 2011)
Volume 110, Issue 9, Pages (May 2016)
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Quantification of Fluorophore Copy Number from Intrinsic Fluctuations during Fluorescence Photobleaching  Chitra R. Nayak, Andrew D. Rutenberg  Biophysical.
J.P. Junker, K. Hell, M. Schlierf, W. Neupert, M. Rief 
Pawel Gniewek, Andrzej Kolinski  Biophysical Journal 
Volume 84, Issue 4, Pages (April 2003)
Volume 105, Issue 9, Pages (November 2013)
Vesna Serrano, Wenge Liu, Stefan Franzen  Biophysical Journal 
Volume 93, Issue 8, Pages (October 2007)
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Volume 96, Issue 3, Pages (February 2009)
Volume 98, Issue 3, Pages (February 2010)
Evolution of Specificity in Protein-Protein Interactions
Presentation transcript:

Volume 97, Issue 9, Pages 2595-2603 (November 2009) Protein Stabilization and the Hofmeister Effect: The Role of Hydrophobic Solvation  Xavier Tadeo, Blanca López-Méndez, David Castaño, Tamara Trigueros, Oscar Millet  Biophysical Journal  Volume 97, Issue 9, Pages 2595-2603 (November 2009) DOI: 10.1016/j.bpj.2009.08.029 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 (A) View of the 20 lowest energy conformers that represent the solution structure for the K×5Q ProtL variant. The mutated glutamines are highlighted in magenta. (B) Close-up of the protein regions where the side chains were mutated. The side chains for wild-type ProtL are shown in blue, whereas the side chains for the mutants are shown in red, for those experimentally determined by NMR, or yellow for those computationally modeled. Biophysical Journal 2009 97, 2595-2603DOI: (10.1016/j.bpj.2009.08.029) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 Correlation between the change in nonpolar surface area introduced by the mutation (ΔASAMut/WTU−F) and the change in stability of the mutants (ΔΔGMut/WT0,U−F) for (A) the K-to-Q mutant set only and (B) all mutant types considered: K-to-Q (solid circles), K-to-A (star), and D-to-E (open squares). Error bars in ΔASAMut/WTU−F arise from the values calculated for the 12 conformations in the manifold of the solution NMR structure and for the two differently modeled structures (K41Q and K7Q). R2 corresponds to the coefficient of determination. Biophysical Journal 2009 97, 2595-2603DOI: (10.1016/j.bpj.2009.08.029) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 Dependence of the denaturation midpoint temperature (Tm) on the cosolute concentration. The lines correspond to the linear regression of the data for sulfate (solid circles), phosphate (open circles), fluoride (solid squares), nitrate (open squares), perchlorate (solid diamonds), and thiocyanate (stars). The error bars correspond to the standard deviation obtained from at least four independent measurements. Biophysical Journal 2009 97, 2595-2603DOI: (10.1016/j.bpj.2009.08.029) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 Dependence of m3 on the change in nonpolar surface introduced with the mutation (ΔASAnp,Mut/WTU−F) for sulfate (solid circles), phosphate (open circles), fluoride (solid squares), nitrate (open squares), perchlorate (solid diamonds), and thiocyanate (stars). The error bars for the m3 values correspond to the standard deviation of the slopes in a plot of ΔΔGMut/WTU−F versus the cosolute concentration, and R2 corresponds to the coefficient of determination. The slope for the wild-type is shown as a solid square in each panel. (Insets) Gaussian distributions of η values (η =δm3/∂ASAnp,Mut/WTU−F) obtained from Monte Carlo propagation of the error from experimental data. Dashed vertical line highlights the value of η = 0. Biophysical Journal 2009 97, 2595-2603DOI: (10.1016/j.bpj.2009.08.029) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 5 Comparison between η and δγ/δC3 values for each anion (taken from Pegram and Record (61)). The error bars correspond to the standard deviations of the linear fittings. R2 is equal to the coefficient of determination. Na2SO4, sodium sulfate; Na2HPO4, sodium phosphate; NaF, sodium fluoride; NaSCN, sodium thiocyanate; NaCIO4, sodium perchlorate; NaNO3, sodium nitrate. Biophysical Journal 2009 97, 2595-2603DOI: (10.1016/j.bpj.2009.08.029) Copyright © 2009 Biophysical Society Terms and Conditions