Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes1 1 Supported by IsoTis S.A.  J. Malda, Ph.D., C.A.

Slides:



Advertisements
Similar presentations
M. M. J. Caron, P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M
Advertisements

Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht,
Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads  Tatiana Gründer,
CCN family 2/connective tissue growth factor (CCN2/CTGF) stimulates proliferation and differentiation of auricular chondrocytes  T. Fujisawa, Ph.D., D.D.S.,
M. M. J. Caron, P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M
TGFβ inhibition during expansion phase increases the chondrogenic re-differentiation capacity of human articular chondrocytes  R. Narcisi, L. Signorile,
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state  N. Fahy, M.L. de Vries-van.
The groove model of osteoarthritis applied to the ovine fetlock joint
Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs  B.D. Elder,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
K.A. Payne, D.M. Didiano, C.R. Chu  Osteoarthritis and Cartilage 
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture  Dr R.L. Mauck, Ph.D., X. Yuan, Dr.
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-ß3 on cell recruitment and re-differentiation  U. Freymann, M. Endres,
Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality  E.J. Koay, Ph.D.,
Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix  A. Gigout, H. Guehring, D. Froemel, A. Meurer, C. Ladel,
Osteoarthritis in a dish: the effects of pro-inflammatory cytokines on cartilage derived from induced pluripotent stem cells  V.P. Willard, B.O. Diekman,
Inhibition of lysyl oxidase activity can delay phenotypic modulation of chondrocytes in two-dimensional culture  J. Farjanel, Ph.D., S. Sève, Ph.D., A.
P. C. Kreuz, C. Gentili, B. Samans, D. Martinelli, J. P. Krüger, W
Human synovial fluid derived mesenchymal stem cells expanded under low oxygen conditions and in a serum-free environment exhibit enhanced lineage-specific.
Autologous tissue-engineered trachea with sheep nasal chondrocytes
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
Glucosamine reduces anabolic as well as catabolic processes in bovine chondrocytes cultured in alginate  E.J. Uitterlinden, M.D., H. Jahr, Ph.D., J.L.M.
C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M
Involvement of Gas7 along the ERK1/2 MAP kinase and SOX9 pathway in chondrogenesis of human marrow-derived mesenchymal stem cells  Y. Chang, M.D., S.W.N.
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage  S. Grad, M. Loparic, R. Peter, M. Stolz, U.
The differences on extracellular matrix among each portion of meniscus
Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes  Simon R.
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Low calcium levels in serum-free media maintain chondrocyte phenotype in monolayer culture and reduce chondrocyte aggregation in suspension culture  A.
C. Zingler, H.-D. Carl, B. Swoboda, S. Krinner, F. Hennig, K. Gelse 
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
M. M. J. Caron, P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M
Osteoarthritis and Cartilage
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
M. Cucchiarini, H. Madry, E.F. Terwilliger 
Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage  Colette Salvat, B.Sc., Audrey Pigenet, Lydie Humbert,
Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes  A. Marsano, M.Sc., S.J. Millward-Sadler,
Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications 
Z. Lin, M. B. , N. J. Pavlos, B. Sc. (Hons. ), Ph. D. , M. A. Cake, B
Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulations  L.M. Kock, A. Ravetto, C.C. van Donkelaar, J.
Bisphosphonate rescues cartilage from trauma damage by promoting mechanical sensitivity and calcium signaling in chondrocytes  Y. Zhou, M. Park, L. Wang,
Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3D scaffolds  G. Feng, L. Li, H.
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application  L. Wang, M.S., M. Lazebnik,
Osteoarthritis and Cartilage
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Dynamic compression counteracts IL-1β-induced release of nitric oxide and PGE2by superficial zone chondrocytes cultured in agarose constructs  T.T Chowdhury,
Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration  S. Ashraf, B.-H. Cha, J.-S. Kim, J. Ahn, I.
Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress  Shuitsu Maeda, M.D., Jun Nishida,
Tissue engineering with meniscus cells derived from surgical debris
Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro  C. Co, M.K.
R. H. J. Das, M. Sc. , H. Jahr, Ph. D. , J. A. N. Verhaar, M. D. , Ph
K. -C. Wang, E. Kwan, K. Aris, T. T. Egelhoff, A. I. Caplan, J. F
Dynamic compression of single cells
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
H. Stenhamre, M. Sc. , K. Slynarski, M. D. , Ph. D. , C. Petrén, T
Demineralized bone alters expression of Wnt network components during chondroinduction of post-natal fibroblasts  Karen E. Yates, Ph.D  Osteoarthritis.
Peroxisome proliferator activated receptor alpha activation decreases inflammatory and destructive responses in osteoarthritic cartilage  S. Clockaerts,
K. -C. Wang, E. Kwan, K. Aris, T. T. Egelhoff, A. I. Caplan, J. F
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
Presentation transcript:

Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes1 1 Supported by IsoTis S.A.  J. Malda, Ph.D., C.A. van Blitterswijk, Ph.D., M. van Geffen, B.Sc., D.E. Martens, Ph.D., J. Tramper, Ph.D., J. Riesle, Ph.D.  Osteoarthritis and Cartilage  Volume 12, Issue 4, Pages 306-313 (April 2004) DOI: 10.1016/j.joca.2003.12.001

Fig. 1 Experimental design. Human nasal chondrocytes were isolated and expanded for 12 days in monolayer culture (two passages). To evaluate the post-expansion chondrocytic phenotype, the resulting cells were seeded in pellets and left for 3 days to form solid aggregates. Pellets were then transferred to a controlled bioreactor and cultured dynamically for up to 21 days. Osteoarthritis and Cartilage 2004 12, 306-313DOI: (10.1016/j.joca.2003.12.001)

Fig. 2 Photomicrographs of human septum nasal chondrocytes attached to the surfaces of polystyrene flasks after 3 days (A) and 7 days (B) of culturing. Scale bars represent 100μm (A) and 150μm (B). Osteoarthritis and Cartilage 2004 12, 306-313DOI: (10.1016/j.joca.2003.12.001)

Fig. 3 Photomicrographs of immunolocalized collagen types I (A), II (B) and IX (C) in monolayer cultures (first passage) after 12 days of cell expansion. Scale bars represent 100μm. Osteoarthritis and Cartilage 2004 12, 306-313DOI: (10.1016/j.joca.2003.12.001)

Fig. 4 Photomicrographs of safranin-O stained sections derived from dynamically cultured cell pellets after 7 days (A, D, G), 14 days (B, E, H) and 21 days (C, F, I) of culturing at 100% DO (A, B, C), 25% DO (D, E, F) and 5% DO (G, H, I). Scale bar represents 250μm. Osteoarthritis and Cartilage 2004 12, 306-313DOI: (10.1016/j.joca.2003.12.001)

Fig. 5 Graphs depicting the DNA (A) and GAG contents of cell pellets after 7 days, 14 days and 21 days of culturing at 100% DO, 25% DO or 5% DO. Mean values (±sd) are represented. At each sampling time, values for a particular DO tension that differ significantly (P<0.05) from the other two are indicated by an asterisk. Other significant differences are indicated by the symbols ‘δ’ and ‘ε’. Osteoarthritis and Cartilage 2004 12, 306-313DOI: (10.1016/j.joca.2003.12.001)

Fig. 6 Photomicrographs of immunolocalized 11-fibrau (A, B, C) and collagen type IX (D, E, F) on sections of cell pellets cultured dynamically for 14 days at 100% DO (A, D), 25% DO (B, E) or 5% DO (C, F). Scale bar represents 250μm. Osteoarthritis and Cartilage 2004 12, 306-313DOI: (10.1016/j.joca.2003.12.001)

Fig. 7 Photomicrographs of immunolocalized collagen types I (A, B, C) and II (D, E, F) on sections of cell pellets cultured dynamically for 21 days at 100% DO (A, D), 25% DO (B, E) and 5% DO (C, F). Scale bar represents 250μm. Osteoarthritis and Cartilage 2004 12, 306-313DOI: (10.1016/j.joca.2003.12.001)