A clustering algorithm for a generalised calorimeter

Slides:



Advertisements
Similar presentations
CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
Advertisements

LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
P. Gay Energy flow session1 Analytic Energy Flow F. Chandez P. Gay S. Monteil CALICE Coll.
Application of layer-by-layer clustering to a generalised calorimeter Chris Ainsley University of Cambridge General CALICE meeting March 2005, NIU,
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
Ties Behnke, Vasiliy Morgunov 1SLAC simulation workshop, May 2003 Pflow in SNARK: the next steps Ties Behnke, SLAC and DESY; Vassilly Morgunov, DESY and.
Some early attempts at PFA Dhiman Chakraborty. LCWS05 Some early attempts at PFA Dhiman Chakraborty2 Introduction Primarily interested in exploring the.
Towards a clustering algorithm for CALICE Chris Ainsley University of Cambridge General CALICE meeting 7-8 December 2004, DESY, Germany.
 Performance Goals -> Motivation  Analog/Digital Comparisons  E-flow Algorithm Development  Readout R&D  Summary Optimization of the Hadron Calorimeter.
Marlin-based Algorithm for Geometry- Independent Clustering MAGIC : v01-03 Chris Ainsley (presented by David Ward) 3 rd ECFA ILC Workshop November.
Calice UK Meeting / 10/11/2004 D.R. Ward1 David Ward University of Cambridge Simulation Reconstruction Preparations for test beam UK software work.
A preliminary analysis of the CALICE test beam data Dhiman Chakraborty, NIU for the CALICE Collaboration LCWS07, Hamburg, Germany May 29 - June 3, 2007.
PFA Development – Definitions and Preparation 0) Generate some events w/G4 in proper format 1)Check Sampling Fractions ECAL, HCAL separately How? Photons,
Cluster finding in CALICE calorimeters Chris Ainsley University of Cambridge, UK General CALICE meeting: simulation/reconstruction session 28  29 June.
1/9/2003 UTA-GEM Simulation Report Venkatesh Kaushik 1 Simulation Study of Digital Hadron Calorimeter Using GEM Venkatesh Kaushik* University of Texas.
Status of calorimeter simulations Mikhail Prokudin, ITEP.
Photon reconstruction and calorimeter software Mikhail Prokudin.
Progress with the Development of Energy Flow Algorithms at Argonne José Repond for Steve Kuhlmann and Steve Magill Argonne National Laboratory Linear Collider.
1 Tracking Reconstruction Norman A. Graf SLAC July 19, 2006.
Track Reconstruction: the trf & ftf toolkits Norman Graf (SLAC) ILD Software Meeting, DESY July 6, 2010.
LAV Software Status Emanuele Leonardi – Tommaso Spadaro Photon Veto WG meeting – 2015/03/24.
Summary of Simulation and Reconstruction Shaomin CHEN (Tsinghua University)  Framework and toolkit  Application in ILC detector design Jupiter/Satellites,
International Workshop on Linear Colliders, Geneve Muon reconstruction and identification in the ILD detector N. D’Ascenzo, V.Saveliev.
A flexible approach to cluster- finding in generic calorimeters of the FLC detector Chris Ainsley University of Cambridge, U.K. 2 nd ECFA Workshop: simulation/reconstruction.
Event Reconstruction in SiD02 with a Dual Readout Calorimeter Detector Geometry EM Calibration Cerenkov/Scintillator Correction Jet Reconstruction Performance.
Tungsten as HCal-material for a LC at multi-TeV energies CALICE AHCAL Meeting, DESY 17 July 2009 Christian Grefe for the Linear Collider Detector Group.
1 Calorimeter in G4MICE Berkeley 10 Feb 2005 Rikard Sandström Geneva University.
PFA Template Concept Performance Mip Track and Interaction Point ID Cluster Pointing Algorithm Single Particle Tests of PFA Algorithms S. Magill ANL.
Development of a Particle Flow Algorithms (PFA) at Argonne Presented by Lei Xia ANL - HEP.
Two Density-based Clustering Algorithms L. Xia (ANL) V. Zutshi (NIU)
Cluster finding in CALICE calorimeters Chris Ainsley University of Cambridge, UK LCWS 04: Simulation (reconstruction) parallel session 20 April 2004, Paris,
Positional and Angular Resolution of the CALICE Pre-Prototype ECAL Hakan Yilmaz.
LCWS06 Bangalore 13/3/06Mark Thomson 1 A Topologic Approach to Particle Flow “PandoraPFA” Mark Thomson University of Cambridge This Talk:  Philosophy.
CBM ECAL simulation status Prokudin Mikhail ITEP.
A Clustering Algorithm for LumiCal Halina Abramowicz, Ronen Ingbir, Sergey Kananov, Aharon Levy, Iftach Sadeh Tel Aviv University DESY Collaboration High.
Interactions of hadrons in the SiW ECAL Towards paper Naomi van der Kolk.
Bangalore, India1 Performance of GLD Detector Bangalore March 9 th -13 th, 2006 T.Yoshioka (ICEPP) on behalf of the.
13 July 2005 ACFA8 Gamma Finding procedure for Realistic PFA T.Fujikawa(Tohoku Univ.), M-C. Chang(Tohoku Univ.), K.Fujii(KEK), A.Miyamoto(KEK), S.Yamashita(ICEPP),
Photon reconstruction and matching Prokudin Mikhail.
1 D.Chakraborty – VLCW'06 – 2006/07/21 PFA reconstruction with directed tree clustering Dhiman Chakraborty for the NICADD/NIU software group Vancouver.
Particle Flow Review Particle Flow for the ILC (Jet) Energy Resolution Goal PFA Confusion Contribution Detector Optimization with PFAs Future Developments.
V. Korbel, DESY1 Progress Report on the TESLA Tile HCAL Option To be filled soon.
J-C Brient-DESY meeting -Jan/ The 2 detector options today …. SiD vs TDR [ * ] [ * ] J.Jaros at ALCPG-SLAC04 ECAL ECAL tungsten-silicon both optionsHCAL.
Ties Behnke: Event Reconstruction 1Arlington LC workshop, Jan 9-11, 2003 Event Reconstruction Event Reconstruction in the BRAHMS simulation framework:
Individual Particle Reconstruction The PFA Approach to Detector Development for the ILC Steve Magill (ANL) Norman Graf, Ron Cassell (SLAC)
The Prototype Simulation of SDHCAL Ran.Han Gerald.Grenier Muriel.Donckt IPNL.
Two-particle separation studies with a clustering algorithm for CALICE Chris Ainsley University of Cambridge CALICE (UK) meeting 10 November 2004, UCL.
7/13/2005The 8th ACFA Daegu, Korea 1 T.Yoshioka (ICEPP), M-C.Chang(Tohoku), K.Fujii (KEK), T.Fujikawa (Tohoku), A.Miyamoto (KEK), S.Yamashita.
12/20/2006ILC-Sousei Annual KEK1 Particle Flow Algorithm for Full Simulation Study ILC-Sousei Annual KEK Dec. 20 th -22 nd, 2006 Tamaki.
Study of Calorimeter performance using the LC full simulator The 8th ACFA Workshop Yoshihiro Yamaguchi (Tsukuba U.) M. -C. Chang (RCNS, Tohoku U.) K. Fujii.
DESY BT analysis - updates - S. Uozumi Dec-12 th 2011 ScECAL meeting.
ECAL Interaction layer PFA Template Track/CalCluster Association Track extrapolation Mip finding Shower interaction point Shower cluster pointing Shower.
1 Dead material correction status. Alexei Maslennikov, Guennadi Pospelov. Bratislava/Kosice/MPI Calorimeter Meeting. 8-December Problems with DM.
Michele Faucci Giannelli
PFA Study with Jupiter Contents : 1. Introduction 2. GLD-PFA
Dual Readout Clustering and Jet Finding
slicPandora: slic + pandoraPFANew
Interactions of hadrons in the Si-W ECAL
Studies with PandoraPFA
Detector Configuration for Simulation (i)
Individual Particle Reconstruction
EFA/DHCal development at NIU
Marlin-based Algorithm for Geometry-Independent Clustering
Argonne National Laboratory
Detector Optimization using Particle Flow Algorithm
Jupiter and Satellites
Michele Faucci Giannelli
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
LC Calorimeter Testbeam Requirements
Sheraton Waikiki Hotel
Presentation transcript:

A clustering algorithm for a generalised calorimeter Chris Ainsley University of Cambridge <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Order of service Layer-by-layer approach to clustering. Separation of nearby charged/neutral clusters. Application to a generalised calorimeter. Clustering a Z event in the full CALICE calorimeter. Coding in the LCIO framework. Summary. Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Layer-by-layer clustering: the algorithm Form clusters by tracking closely-related hits (> 1/3 mip) layer-by-layer through calorimeter: for a given hit j in a given layer l, minimize the distance d w.r.t all hits k in layer l-1; if d < dist_max_ecal (Ecal) or dist_max_hcal (Hcal) for minimum d, assign hit j to same cluster as hit k which yields minimum; if not, repeat with all hits in layer l-2, then, if necessary, layer l-3, etc., right through to first layer of Ecal; after iterating over all hits j, seed new clusters with those still unassigned, grouping those within prox_seed_max into same seed; if in Ecal, calculate weighted centre of each cluster’s hits in layer l (weight by energy (analogue) or density (digital)) and assign a direction cosine to each hit along the line joining its cluster’s centre in the seed layer (or (0,0,0) if it’s a seed) to its cluster’s centre in layer l; if in Hcal, assign a direction cosine to each hit along the line from the hit to which each is linked (or (0,0,0) if it’s a seed) to the hit itself; try to recover backward-spiralling track-like, and low multiplicity ‘halo’, cluster fragments … Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

5 GeV + event at 3 cm separation Reconstructed clusters True particle clusters Cell-size = 1×1 cm2 (Si/W Ecal; RPC Hcal). dist_max_ecal = 2.0 cm; dist_max_hcal = 3.0 cm. 98 % of event energy maps black  black (+) and red  red () . Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Same event, different clustering cuts Reconstructed clusters True particle clusters dist_max_ecal = 3.0 cm; dist_max_hcal = 1.0 cm. Now 78 % of event energy maps black  red () and red  black (+) . 22 % “confusion”. Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Layer-by-layer clustering in a generalised detector Approach requires layer index to vary smoothly: e.g. in TESLA detector, index changes abruptly at stave boundaries in Ecal barrel (layers overlap at 45°); at barrel/endcap boundaries in Ecal & Hcal (layers overlap at 90°). To apply layer-by-layer clustering, need a scheme to overcome this. Achieved by replacing layer index with pseudolayer index in regions where layer index discontinuities occur. Same-pseudolayer indexed hits defined by closed shells of octagonal prisms coaxial with z-axis. Simple extension to cope with any arbitrary n-fold rotationally-symmetric, layered calorimeter: octagonal prisms → n-polygonal prisms. Locations/orientations of shells automatically set by locations/orientations of real, physical, sensitive layers. Just takes n and layer-spacings in barrel and endcaps as input. Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

How the generalised detector shapes up Transverse section Longitudinal section Solid blue lines aligned along real, physical, sensitive layers. Dot-dashed magenta lines bound shell containing hits with same pseudolayer index, l. Pseudostaves automatically encoded by specifying n, f1 and Rl and Zl ( l). Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Reconstructed clusters True particle clusters 91 GeV Z → u,d,s jets event Reconstructed clusters True particle clusters Reconstruction in full detector (Si/W Ecal; RPC Hcal). dist_max_ecal = 2.0 cm; dist_max_hcal = 3.0 cm. Good 1:1 correspondence between reconstructed and true clusters (5 highest energy clusters shown). Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Clustering in LCIO: a modular approach Modules to do the reconstruction: CalorimeterConfig.cc → (re)defines calorimeter layer positions; HitToCell.cc → merges same-cell hits; CellToStore.cc → stores cells above energy threshold; StoreCalibration.cc → calibrates the stored cell energies; StoreToStoreOrdered.cc → ranks stored cells by weight in each pseudolayer (in preparation for clustering); StoreOrderedToCluster1.cc → does the coarse cluster reconstruction; Cluster1ToCluster2.cc → attempts matching of backward-spiralling track-like cluster fragments onto forward-propagating parent clusters; Cluster2ToCluster3.cc → attempts to reunite low multiplicity “halo’ cluster fragments with parent clusters. Additional module to access MC truth: StoreOrderedToMCParticle.cc → forms the true clusters. Plotting modules: ClusterToClusterOrdered.cc → ranks reconstructed clusters by energy in each pseudostave (in preparation for plotting); PlotRecoClusters.cc → plots reconstructed clusters colour-correlated with energy-rank in pseudostave; MCParticleToMCParticleOrdered.cc → ranks true clusters by energy in each pseudostave (in preparation for plotting); PlotTrueClusters.cc → plots true clusters colour-correlated with energy-rank in pseudostave; PlotPerformance.cc → plots the distribution of energy between true and reconstructed clusters. Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Modifying the detector Given detector configuration, clustering governed by global constants set in header file LCIOFrameSteer.h  ‘tweaks’ go in here. Layer positions fed in through CalorimeterConfig.cc. To apply algorithm to new detector designs, just need to modify these two files. Let’s see how … Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Snippets of code from LCIOFrameSteer.h Set the detector parameters: const int nlayers_ecal = 40; // number of Ecal (pseudo)layers const int nlayers_hcal = 40; // number of Hcal (pseudo)layers const int npseudostaves_barrel = 8; // degree of rotational symmetry of barrel const double phi_1 = M_PI/2.; // azimuthal angle of first barrel (pseudo)stave Set the Ecal type: const string ecal = “siw”; // “siw” => Si/W Ecal // “maps” => MAPS Ecal Set the Hcal type: const string hcal = “rpc”; // “rpc” => Fe/RPC Hcal // “scint” => Fe/scintillator Hcal Set the mode of operation: const string mode = “a/d”; // “a/a” => analogue Ecal / analogue Hcal // “a/d” => analogue Ecal / digital Hcal // “d/a” => digital Ecal / analogue Hcal // “d/d” => digital Ecal / digital Hcal Set the clustering cuts: const double dist_max_ecal = 20.0 ; // mm // maximum “d” for cluster continuity across Ecal // layers const double dist_max_hcal = 30.0 ; // mm // maximum “d” for cluster continuity across Hcal const double prox_seed_max = 20.0 ; // mm // maximum radius of new cluster seed const double prox_merge_max = 20.0; // mm // maximum proximity for backward-spiralling track- // matching const double cos_gamma_max = 0.25; // minimum angle between direction cosines for // backward-spiralling track-matching const int cluster_size_min = 10; // maximum cluster size to be considered “halo’ const double tan_beta_max = 6.0; // maximum angle for ‘halo’ recovery Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Snippets of code from CalorimeterConfig.cc Set the layer positions in the r- and z-directions (e.g. TESLA TDR design): // Create collections for the r and z layers LCCollectionVec* siteOfRLayerVec = new LCCollectionVec(LCIO::LCFLOATVEC); LCCollectionVec* siteOfZLayerVec = new // Fill the collections with their positions for (int l=0; l<=1+nlayers_ecal+nlayers_hcal; l++) { LCFloatVec* siteOfRLayer = new LCFloatVec; LCFloatVec* siteOfZLayer = new LCFloatVec; if (l<=30) { // layers 1-30 (Ecal) + layer 0 siteOfRLayer->push_back(1698.85+(3.9* l)); siteOfZLayer->push_back(2831.10+(3.9* l)); } else if (l >30 && l<=nlayers_ecal) { // 31-40 (Ecal) siteOfRLayer->push_back(1815.85+(6.7* (l -30))); siteOfZLayer->push_back(2948.10+(6.7* (l -30))); else { // layers 41-80 (Hcal) + layer 81 siteOfRLayer->push_back(1931.25+(24.5* (l -41))); siteOfZLayer->push_back(3039.25+(24.5* (l -41))); } siteOfRLayerVec->push_back(siteOfRLayer); siteOfZLayerVec->push_back(siteOfZLayer); // And save the collections evt->addCollection(siteOfRLayerVec,"site_rlayers"); evt->addCollection(siteOfZLayerVec, "site_zlayers"); Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Summary & outlook R&D on clustering algorithm for generalised calorimeter on-going. Approach utilizes the high granularity of the calorimeter cells to “track” clusters (pseudo)layer-by-(pseudo)layer. Pseudolayer concept  flexibility to cope with alternative layered geometries without having to recode algorithm itself. Applicable to any (likely) detector design comprising an n-fold rotationally symmetric barrel closed by endcaps → just to specify need n and layer-spacings. Written in C++; LCIO (v1.3) compliant; modularised  input parameters kept distinct from reconstruction. Will aim to make code publicly available soon. Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

That’s all folks… The end Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany

Cluster-tracking between pseudolayers From the pseudobarrel From the pseudoendcap Chris Ainsley <ainsley@hep.phy.cam.ac.uk> LC Simulation Workshop 9-10 December 2004, DESY, Germany