Chapter 4: Network Layer

Slides:



Advertisements
Similar presentations
What is “Routing”? Routing algorithm that part of the network layer responsible for deciding on which output line to transmit an incoming packet Adaptive.
Advertisements

13 –Routing Protocols Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
Lecture 8 Overview. Graph abstraction u y x wv z Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v),
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Introduction to Networking Bin Lin TA March 3 rd, 2005 Recital 6.
Data Communication and Networks Lecture 7 Networks: Part 2 Routing Algorithms October 27, 2005.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 17.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
Routing Algorithms and Routing in the Internet
CPSC441: Routing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 hours.
Network Layer4-1 Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross.
Lecture 7 Overview. Two Key Network-Layer Functions forwarding: move packets from router’s input to appropriate router output routing: determine route.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Announcement r Project 2 due next week! r Homework 3 available soon, will put it online r Recitation tomorrow on Minet and project 2.
Network Layer 4-1 Chapter 4 Network Layer. Network Layer 4-2 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3.
1 Announcement #1 r Did you all receive homework #1 and #2? r Homework #3 will be available online during the day r Midterm.
Routing Algorithm March 3 rd, Routing Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links  link cost:
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 18.
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
1 CSCD 330 Network Programming Spring 2014 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
Introduction 1 Lecture 21 Network Layer (Routing Activity) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
IP routing. Simple Routing Table svr 4% netstat –r n Routing tables DestinationGatewayFlagsRefcntUseInterface UGH00emd UH10lo0.
Network Layer4-1 Chapter 4 Network Layer Part 3: Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
13 – Routing Algorithms Network Layer.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
1 Week 5 Lecture 2 IP Layer. 2 Network layer functions transport packet from sending to receiving hosts transport packet from sending to receiving hosts.
Routing 1 Network Layer Network Layer goals:  understand principles behind network layer services:  routing (path selection)  how a router works  instantiation.
Introduction 1 Lecture 19 Network Layer (Routing Algorithms) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 20 Omar Meqdadi Department of Computer Science and Software Engineering University.
Internet Routing r Routing algorithms m Link state m Distance Vector m Hierarchical routing r Routing protocols m RIP m OSPF m BGP.
Computer Networks CSE 434 Fall 2009 Sandeep K. S. Gupta Arizona State University Research Experience.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter4_3.
CS 4284 Systems Capstone Godmar Back Networking. CS 4284 Spring 2013 Summary Basics of Network Layer –Routing (path selection) vs Forwarding (switching)
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
4: Network Layer4-1 Chapter 4: Network Layer Last time: r Chapter Goals m Understand network layer principles and Internet implementation r Started routing.
Project 2 r DUE Wed: 02/24 Network Layer4-1. Project 2 r DUE Wed: 02/24 r DUE Mon: 02/29 Network Layer4-2.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
CSE 421 Computer Networks. Chapter 4 Network Layer Thanks to you All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer.
CSE 421 Computer Networks. Network Layer 4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside.
Ch4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CPSC 335 Data Communication.
Chapter 7 Dynamic Routing
Chapter 4 Network Layer A note on the use of these ppt slides:
CMPT 880: Internet Architectures and Protocols
CS 457 – Lecture 12 Routing Spring 2012.
Network Layer Introduction Datagram networks IP: Internet Protocol
Chapter 5 Network Layer.
Chapter 4: outline 4.1 introduction
2017 session 1 TELE3118: Network Technologies Week 7: Network Layer Control Plane: Intra-Domain Routing Some slides have been adapted from: Computer Networking:
Road Map I. Introduction II. IP Protocols III. Transport Layer
Lecture 10 Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides are generated from.
CSCD 330 Network Programming
Chapter 4-4 routing and IP routing
CS4470 Computer Networking Protocols
CMPE 252A : Computer Networks
Chapter 4: Network Layer
Network Layer (contd.) Routing
CSCD 330 Network Programming
Network Layer: Link-state and Distance-Vector Routing Protocols
Chapter 4: Network Layer
CSCD 330 Network Programming
Chapter 4 Network Layer A note on the use of these ppt slides:
Presentation transcript:

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

Interplay between routing and forwarding 1 2 3 0111 value in arriving packet’s header routing algorithm local forwarding table header value output link 0100 0101 1001 Network Layer

Graph abstraction z x u y w v 5 2 3 1 Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) } Remark: Graph abstraction is useful in other network contexts Example: P2P, where N is set of peers and E is set of TCP connections Network Layer

Graph abstraction: costs u y x w v z 2 1 3 5 c(x,x’) = cost of link (x,x’) - e.g., c(w,z) = 5 cost could always be 1, or inversely related to bandwidth, or inversely related to congestion Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp) Question: What’s the least-cost path between u and z ? Routing algorithm: algorithm that finds least-cost path Network Layer

Routing Algorithm classification Global or decentralized information? Global: all routers have complete topology, link cost info “link state” algorithms Decentralized: router knows physically-connected neighbors, link costs to neighbors iterative process of computation, exchange of info with neighbors “distance vector” algorithms Static or dynamic? Static: routes change slowly over time Dynamic: routes change more quickly periodic update in response to link cost changes Network Layer

Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Network Layer

A Link-State Routing Algorithm Dijkstra’s algorithm net topology, link costs known to all nodes accomplished via “link state broadcast” all nodes have same info computes least cost paths from one node (‘source”) to all other nodes gives forwarding table for that node iterative: after k iterations, know least cost path to k dest.’s Notation: c(x,y): link cost from node x to y; = ∞ if not direct neighbors D(v): current value of cost of path from source to dest. v p(v): predecessor node along path from source to v N': set of nodes whose least cost path definitively known Network Layer

Dijsktra’s Algorithm 1 Initialization: 2 N' = {u} 3 for all nodes v 4 if v adjacent to u 5 then D(v) = c(u,v) 6 else D(v) = ∞ 7 8 Loop 9 find w not in N' such that D(w) is a minimum 10 add w to N' 11 update D(v) for all v adjacent to w and not in N' : 12 D(v) = min( D(v), D(w) + c(w,v) ) 13 /* new cost to v is either old cost to v or known 14 shortest path cost to w plus cost from w to v */ 15 until all nodes in N' Network Layer

Dijkstra’s algorithm: example Step 1 2 3 4 5 N' u ux uxy uxyv uxyvw uxyvwz D(v),p(v) 2,u D(w),p(w) 5,u 4,x 3,y D(x),p(x) 1,u D(y),p(y) ∞ 2,x D(z),p(z) ∞ 4,y u y x w v z 2 1 3 5 Network Layer