.

Slides:



Advertisements
Similar presentations
Factoring Polynomials
Advertisements

Factoring Polynomials.
Warm up Use synthetic division to divide (4x3 – 3x2 + 2x + 1)/ (x – 1) (x3 – x2 – 6)/(x + 2)
5.3 Division of Polynomials. Dividing a Polynomial by a monomial.  Divide each term of the polynomial by the monomial.
6 – 4: Factoring and Solving Polynomial Equations (Day 1)
Factoring Polynomials
Factoring Polynomials. 1.Check for GCF 2.Find the GCF of all terms 3.Divide each term by GCF 4.The GCF out front 5.Remainder in parentheses Greatest Common.
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find.
Section 7.3 Products and Factors of Polynomials.
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
Warm Up #10 Multiply the polynomial. 1. (x + 2)(x + 3)(x + 1)
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
Perfect Square Trinomials and Difference of Perfect Squares
Chapter factoring polynomials. Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two.
EXAMPLE 1 Find a common monomial factor Factor the polynomial completely. a. x 3 + 2x 2 – 15x Factor common monomial. = x(x + 5)(x – 3 ) Factor trinomial.
Factoring Special Products
Objective: 6.4 Factoring and Solving Polynomial Equations 1 5 Minute Check  Simplify the expression
13.01 Polynomials and Their Degree. A polynomial is the sum or difference of monomials. x + 3 Examples: Remember, a monomial is a number, a variable,
Multiplying Polynomials *You must know how to multiply before you can factor!”
Holt McDougal Algebra 2 Factoring Polynomials How do we use the Factor Theorem to determine factors of a polynomial? How do we factor the sum and difference.
Section 2-2 Synthetic Division; The Remainder and Factor Theorems.
Section 4-3 The Remainder and Factor Theorems. Remainder Theorem Remainder Theorem – If a polynomial P(x) is divided by x-r, the remainder is a constant,
SECTION 3-4 FACTORING POLYNOMIALS Objectives - Use the Factor Theorem to determine factors of a polynomial - Factor the sum and difference of two cubes.
Dividing Polynomials SYNTHETIC DIVISION AND LONG DIVISION METHODS.
WARM UP SOLVE USING THE QUADRATIC EQUATION, WHAT IS THE EXACT ANSWER. DON’T ROUND.
6.1 Review of the Rules for Exponents
EXAMPLE 1 Find a common monomial factor Factor the polynomial completely. a. x 3 + 2x 2 – 15x Factor common monomial. = x(x + 5)(x – 3 ) Factor trinomial.
Objectives Factor the sum and difference of two cubes.
Solving Polynomials. Factoring Options 1.GCF Factoring (take-out a common term) 2.Sum or Difference of Cubes 3.Factor by Grouping 4.U Substitution 5.Polynomial.
Polynomials. DegreeNameExample 0Constant 1Linear 2Quadratic 3Cubic 4Quartic 5Quintic Some of the Special Names of the Polynomials of the first few degrees:
Remainder and Factor Theorems
Factoring Polynomials
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 2. a2 – b2
Objectives Factor the sum and difference of two cubes.
Factoring Polynomials
4.5 & 4.6 Factoring Polynomials & Solving by Factoring
Do Now: Factor the polynomial.
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
College Algebra & Trigonometry
Warm - up x2 – 24x 4x(x – 6) 2. 2x2 + 11x – 21 (2x – 3)(x + 7)
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Dividing Polynomials.
Do Now Graph the following using a calculator: A) B)
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Apply the Remainder and Factor Theorems Lesson 2.5
Factoring Polynomials
Polynomials and Polynomial Functions
Essential Questions How do we use the Factor Theorem to determine factors of a polynomial? How do we factor the sum and difference of two cubes.
Factor by Grouping Skill 55.
LEARNING GOALS – LESSON 6.4
5.4 Factor and Solve Polynomial Equations
Factoring Polynomials
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
Factoring Polynomials
Dividing Polynomials.
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
You can use synthetic division to evaluate polynomials
(B12) Multiplying Polynomials
Factoring Polynomials
Warm Up 1. Divide by using synthetic division. (8x3 + 6x2 + 7) ÷ (x + 2) 8x2 – 10x + 20 – 33 x Divide by using synthetic division. (x3 –
6.7 Dividing a Polynomial by a Polynomial
Recall that if a number is divided by any of its factors, the remainder is 0. Likewise, if a polynomial is divided by any of its factors, the remainder.
Factoring Polynomials
 .
Same Sign Opposite Sign Always Positive
Presentation transcript:

 

Recall that if a number is divided by any of its factors, the remainder is 0. Likewise, if a polynomial is divided by any of its factors, the remainder is 0. The Remainder Theorem states that if a polynomial is divided by (x – a), the remainder is the value of the function at a. So, if (x – a) is a factor of P(x), then P(a) = 0.

You are already familiar with methods for factoring quadratic expressions. You can factor polynomials of higher degrees using many of the same methods you learned in Unit 2.

Example 2: Factoring by Grouping Factor: x3 – x2 – 25x + 25. (x3 – x2) + (–25x + 25) Group terms. Factor common monomials from each group. x2(x – 1) – 25(x – 1) Factor out the common binomial (x – 1). (x – 1)(x2 – 25) Factor the difference of squares. (x – 1)(x – 5)(x + 5)

Example 2 Continued Check Use the table feature of your calculator to compare the original expression and the factored form. The table shows that the original function and the factored form have the same function values. 

Check It Out! Example 2a Factor: x3 – 2x2 – 9x + 18. (x3 – 2x2) + (–9x + 18) Group terms. Factor common monomials from each group. x2(x – 2) – 9(x – 2) Factor out the common binomial (x – 2). (x – 2)(x2 – 9) Factor the difference of squares. (x – 2)(x – 3)(x + 3)

Check It Out! Example 2a Continued Check Use the table feature of your calculator to compare the original expression and the factored form. The table shows that the original function and the factored form have the same function values. 

Check It Out! Example 2b Factor: 2x3 + x2 + 8x + 4. (2x3 + x2) + (8x + 4) Group terms. Factor common monomials from each group. x2(2x + 1) + 4(2x + 1) Factor out the common binomial (2x + 1). (2x + 1)(x2 + 4) (2x + 1)(x2 + 4)

Just as there is a special rule for factoring the difference of two squares, there are special rules for factoring the sum or difference of two cubes.