© Eric Zivot 2012 Nobel Prize Lecture in Economics The Study of Causal Relationships in the Macroeconomy: The Contributions of Christopher Sims Eric Zivot.

Slides:



Advertisements
Similar presentations
Cointegration and Error Correction Models
Advertisements

Financial Econometrics
Estimating The Dynamics of Price Discovery
Chapter 17 Monetarism © OnlineTexts.com p. 1.
Macroeconomics fifth edition N. Gregory Mankiw PowerPoint ® Slides by Ron Cronovich macro © 2002 Worth Publishers, all rights reserved Topic 12: Stabilization.
Design of Experiments Lecture I
Aggregate demand and aggregate supply model A model that explains short-run fluctuations in real GDP and the price level.
Dejan Krušec PhD Student European University Institute Rethymno, Rethymno, Outline of research in the area of EMU – Current state.
Intermediate Macroeconomics Chapter 8 Money Supply.
Vector Autoregressive Models
Formations of expectations in econometric models Gregory C Chow.
Vector Error Correction and Vector Autoregressive Models
XV. New Classical Macroeconomics. XV.1 Introduction Before WWI: “classical” macroeconomics, market clearing, full employment and full employment product,
Chapter Thirteen Modern Macroeconomic Models. Copyright © Houghton Mifflin Company. All rights reserved.13 | 2 A dynamic model is one in which actions.
two policy debates: Should policy be active or passive?
Should policy be active or passive?
New Keynesian economics Modern macroeconomic modeling.
Empirical study of causality between Real GDP and Monetary variables. Presented by : Hanane Ayad.
Introduction Macroeconomics is the study of the structure and performance of national economies and of the government policies used to influence economic.
1.1 What is Econometrics? A set of techniques for measuring economic relationships. 1.What is an economic relationship? It is a relationship among economic.
Chapter 11 Classical Business Cycle Analysis: Market-Clearing Macroeconomics Copyright © 2012 Pearson Education Inc.
New Classical Economics Graduate Macroeconomics I ECON 309 – Cunningham.
Spectrum of Macroeconomic Thought Marx Radical Political Economy Kalecki Post- Keynesian Keynes Keynesian (hydraulic Keynesians) Monetarist Friedman New.
VAR Małgorzata Bednarek Maria Derezińska Magdalena Sadowska.
New Classical Economics Chapter 12 Prof. Steve Cunningham Intermediate Macroeconomics ECON 219.
Structural VAR and Finance Abstract In this paper, I discuss VAR (vector autoregression) framework, which is widely used in finance and economics to examine.
Aggregate demand and aggregate supply model A model that explains short-run fluctuations in real GDP and the price level.
Classical Business Cycle Analysis: Market-Clearing Macroeconomics
OVERVIEW Eco 5375 Economic and Business Forecasting Tom Fomby 301A Lee Fall 2009.
Linear Regression Models Powerful modeling technique Tease out relationships between “independent” variables and 1 “dependent” variable Models not perfect…need.
Copyright © 2009 Pearson Addison-Wesley. All rights reserved. Chapter 17 New Classical Macro Confronts New Keynesian Macro.
Money, Output, and Prices Classical vs. Keynesians.
NUIG Macro 1 Lecture 19: The IS/LM Model (continued) Based Primarily on Mankiw Chapters 11.
Estimating potential output using business survey data in a SVAR framework 3° annual WORKSHOP on Macroeconomic Forecasting Montreal 5-6 october 2007 Tatiana.
Business Forecasting Used to try to predict the future Uses two main methods: Qualitative – seeking opinions on which to base decision making – Consumer.
Macroeconomics Chapter 151 Money and Business Cycles I: The Price-Misperceptions Model C h a p t e r 1 5.
Lecture 5: Macroeconomic Model Given to the EMBA 8400 Class South Class Room #600 February 2, 2007 Dr. Rajeev Dhawan Director.
Determinants of the velocity of money, the case of Romanian economy Dissertation Paper Student: Moinescu Bogdan Supervisor: Phd. Professor Moisă Altăr.
The Demand Side: Consumption & Saving. Created By: Reem M. Al-Hajji.
Project funded under the Socio-economic Sciences and Humanities European Commission Money demand and excess liquidity in the euro area Christian Dreger,
Academy of Economic Studies Doctoral School of Finance and Banking DISSERTATION PAPER BUDGET DEFICIT AND INFLATION MSc. Student : Marius Serban Supervisor.
Various topics Petter Mostad Overview Epidemiology Study types / data types Econometrics Time series data More about sampling –Estimation.
HAOMING LIU JINLI ZENG KENAN ERTUNC GENETIC ABILITY AND INTERGENERATIONAL EARNINGS MOBILITY 1.
MODELLING INFLATION IN CROATIA TANJA BROZ & MARUŠKA VIZEK.
LECTURE 1 - SCOPE, OBJECTIVES AND METHODS OF DISCIPLINE "ECONOMETRICS"
30 The Debate over Monetary and Fiscal Policy The love of money is the root of all evil. THE NEW TESTAMENT Lack of money is the root of all evil. GEORGE.
Outline 4: Exchange Rates and Monetary Economics: How Changes in the Money Supply Affect Exchange Rates and Forecasting Exchange Rates in the Short Run.
Chapter 17 Parks Econ124 Monetarism © OnlineTexts.com p. ‹#›
Chapter 12: Aggregate Demand and Aggregate Supply Analysis © 2008 Prentice Hall Business Publishing Economics R. Glenn Hubbard, Anthony Patrick O’Brien,
Answers to Review Questions  1.What are the ultimate targets of monetary policy?  The ultimate targets of monetary policy include stable prices, sustainable.
Chapter 21: Learning Objectives What is Monetarism? The Central Role of Expectations: Adaptive vs. Rational Rules vs. Discretion: Time Inconsistency in.
PRINCIPLES OF MACROECONOMICS LECTURE 8B MONETARISM AND DEMAND FOR MONEY.
NURHIKMAH OLA LAIRI (LAILUOLA) Ph.D International Trade Student Id :
Lecture 1 Introduction to econometrics
Rational Expectations Intermediate Macroeconomics ECON-305 Spring 2013 Professor Dalton Boise State University.
Time Series Analysis PART II. Econometric Forecasting Forecasting is an important part of econometric analysis, for some people probably the most important.
1/25 Introduction to Econometrics. 2/25 Econometrics Econometrics – „economic measurement“ „May be defined as the quantitative analysis of actual economic.
Introduction to a Small Macro Model Jaromir Hurnik Monetary Policy and Business Cycle April 2009.
MONEY SUPPLY AND ECONOMIC GROWTH IN SRI LANKA (An Empirical Re - Examination of Monetarist Concept)
Copyright  2006 McGraw-Hill Australia Pty Ltd PPTs t/a Macroeconomics 2e by Dornbusch, Bodman, Crosby, Fischer, Startz Slides prepared by Dr Monica Keneley.
E NTE PER LE N UOVE TECNOLOGIE L’ E NERGIA E L’ A MBIENTE The causality between energy consumption and economic growth: A multi-sectoral analysis using.
Demand Forecasting.
Time Series Econometrics
Financial Econometrics Lecture Notes 4
32 Debates in Macroeconomics: Monetarism, New Classical Theory, and Supply-Side Economics Chapter Outline Keynesian Economics Monetarism The Velocity.
Ch8 Time Series Modeling
Economics 5310 Lecture 26 Causality, VAR.
ECO 400-Time Series Econometrics VAR MODELS
Lecture 5: Macroeconomic Model
CHAPTER – 1.1 UNCERTAINTIES IN MEASUREMENTS.
Presentation transcript:

© Eric Zivot 2012 Nobel Prize Lecture in Economics The Study of Causal Relationships in the Macroeconomy: The Contributions of Christopher Sims Eric Zivot Robert Richards Chaired Professor of Economics

Christopher Sims Receives Nobel Prize Award given for their empirical research on cause and effect in the macroeconomy Sargent and Sims developed methods for identifying and quantifying the effects of changes in policy © Eric Zivot 2012

Christopher Sims at Work © Eric Zivot 2012

Christopher Sims – Trombone Player! © Eric Zivot 2012

Short Biography Harvard, PhD 1968 Harvard, Assistant Professor Minnesota, Associate Professor Minnesota, Professor Yale, Henry Ford II Professor –One of my PhD advisors!!! Princeton, Harold H. Helm '20 Professor of Economics and Banking present © Eric Zivot 2012

Simss Main Contributions Statistical tests for causal relations –Money, Income, and Causality, AER 1972 Vector autoregression (VAR) modeling framework –Macroeconomics and Reality, ECTA, 1980 –Comparison of Interwar and Postwar Business Cycles, AER, 1980 –Are Forecasting Models Usable for Policy Analysis?, Fed Quarterly Review, Use of Bayesian statistical methodology –Forecasting and conditional projection using realistic prior distributions. Econometric Reviews, 1984 –Bayesian Methods for Dynamic Multivariate Models", (with Tao Zha), IER, 1998 © Eric Zivot 2012

Money, Income and Causality Background Keynesian-Monetarist Debate about the causes of business cycles –Keynesian view: business cycles are primarily demand-driven –Monetarist view: business cycles are primarily the result of monetary policy mistakes Monetarists argued that growth in the stock of money was tightly related to growth in income and they argued that this relationship was causal - fluctuations in money growth causing fluctuations in income. A statistically estimated equation with income explained by current and past money growth implied that most of the business cycle could be eliminated by simply making money supply growth constant. © Eric Zivot 2012

Money, Income, and Causality Contributions Examine the substantive question: Is there statistical evidence that changes in the money supply is causal in the money-income relationship? Develop a direct statistical test for the existence of unidirectional causality. –Complements the causality tests of Clive Granger, who was also awarded the Nobel Prize for his work on the statistical analysis causality. © Eric Zivot 2012

Causality Testing: Framework If the monetarists were right in claiming that the strong correlations of money growth with income primarily reflected a causal influence of monetary policy errors on income, future money growth should not contribute to explaining current income, once the influence of current and past money growth on income had been accounted for. © Eric Zivot 2012

Causality Testing: Results The monetarist regressions passed the test. Future money growth did not help predict current income Problem: Framework only considers two variables –What about interest rates, prices, unemployment, exchange rates, etc? –Neglecting these variables could cloud the money- income causality results © Eric Zivot 2012

Macroeconomics and Reality Circa 1980, the state of the art in macroeconometrics was to use large-scale Keynesian-type structural models. These models often involved scores or even hundreds of equations, essentially a S=D equation for every important market, identities to make sure things add up correctly, etc. But in order to estimate the parameters of these models, the structural parameters as they are known, you had to overcome the identification problem. © Eric Zivot 2012

Macroeconomics and Reality The identification problem essentially asks if its possible to estimate the structural parameters at all. The answer, in general, is no. For example, if every variable in the model appears in every equation, then it won't be possible to estimate the structural model due to simultaneity bias. © Eric Zivot 2012

Identification of Structural Models © Eric Zivot 2012

Macroeconomics and Reality In large models, exclusions are numerous, and many researchers simply assumed whatever exclusion restrictions were needed to achieve identification, and then went on to estimate the model. Sims argued the assumptions that researchers were imposing to achieve identification had no theoretical basis. They were ad hoc and difficult to defend - especially when expectations are in the model © Eric Zivot 2012

Simss VAR Modeling Framework Step1: Construct statistical forecasting model (VAR) to separate expected from unexpected effects Step 2: Identify causal links and extract fundamental shocks (VAR SVAR) Step 3: Trace effects of fundamental shocks on economy over time – Impulse response analysis © Eric Zivot 2012

Step 1: Construct VAR Forecasting model for a collection of macro variables without ad hoc identifying restrictions Each variable is forecast using lagged values of itself and all other variables –Variable = Forecast (expected) + error (unexpected) Short-term forecasting accuracy is typically quite good © Eric Zivot 2012

Step 2: Identify Causal Links Identify causal links and extract fundamental shocks using theory-based and non-ad hoc assumptions –Some variables react to others with a lag (e.g., M only responds to Y with a lag) –Long-run neutrality arguments (e.g., M has no long- run impact on Y) Process transforms errors in VAR equations into fundamental shocks © Eric Zivot 2012

Step 3: Impulse Response Analysis © Eric Zivot 2012 Q: How do macro variables respond to unexpected fundamental shocks ?

The Monetarist Debate Viewed Through SVARs Sims and others were able to show using SVAR's that influences of monetary policy were detectable in the data. But at the same time, they showed that most movements in both money stock and interest rates represented systematic reactions of monetary authorities to the state of the economy. Only a small part of macroeconomic fluctuations could be attributed to erratic monetary policy. © Eric Zivot 2012

Bayesian Methodology The textbook frequentist view distinguishes non- random, but unknown, parameters from random quantities that repeatedly vary, or could conceivably repeatedly vary. The Bayesian view treats everything that is not known as random, until it is observed, after which it becomes non-random Think of coin flipping experiment © Eric Zivot 2012

Bayesian Methodology A Bayesian approach comfortably accommodates uncertain prior information. In a large model, it allows introducing sensible restrictions on the values of unknown parameters, without pretending that these restrictions are without uncertainty. That is, it allows introducing probability distributions for model parameters, then allowing the data to update or sharpen those distributions. It thereby avoids the need to imply unrealistic precision in the probability distributions for model predictions. © Eric Zivot 2012

Concluding Remarks Sims changed the way macroeconomists and econometricians model the economy After Sims, the profession moved away from using large scale Keynesian-style structural macro-models and adopted the SVAR approach IRF analysis from SVARs provide the stylized facts from which modern theory-based models are calibrated and evaluated Bayesian methods have become widely accepted © Eric Zivot 2012