Lecture Slides Essentials of Statistics 5th Edition

Slides:



Advertisements
Similar presentations
Lecture Slides Elementary Statistics Eleventh Edition
Advertisements

Review and Preview and Random Variables
Random Variables A random variable is a variable (usually we use x), that has a single numerical value, determined by chance, for each outcome of a procedure.
Sections 4.1 and 4.2 Overview Random Variables. PROBABILITY DISTRIBUTIONS This chapter will deal with the construction of probability distributions by.
Chapter 4 Probability Distributions
Probability and Probability Distributions
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-2.
Slide 1 Statistics Workshop Tutorial 4 Probability Probability Distributions.
Lecture Slides Elementary Statistics Twelfth Edition
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Edited by.
Slide 1 Statistics Workshop Tutorial 7 Discrete Random Variables Binomial Distributions.
Chapter 6 Discrete Probability Distributions.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Discrete Distributions Chapter 5.
5-2 Probability Distributions This section introduces the important concept of a probability distribution, which gives the probability for each value of.
1 Overview This chapter will deal with the construction of probability distributions by combining the methods of Chapter 2 with the those of Chapter 4.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Chapter 5 Probability Distributions
Statistics 5.2.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 5 Discrete Probability Distributions 5-1 Review and Preview 5-2.
Slide 1 Copyright © 2004 Pearson Education, Inc..
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
1 Chapter 4. Section 4-1 and 4-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Chapter 4 Probability Distributions
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 11 Section 1 – Slide 1 of 34 Chapter 11 Section 1 Random Variables.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
1 Chapter 4. Section 4-1 and 4-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
DISCRETE PROBABILITY DISTRIBUTIONS
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 5-2 Random Variables.
IT College Introduction to Computer Statistical Packages Eng. Heba Hamad 2010.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
Sections 5.1 and 5.2 Review and Preview and Random Variables.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 5-1 Review and Preview.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Discrete Random Variables
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1 Probability Distributions Chapter 4 M A R I O F. T R I O L A Copyright © 1998,
Slide 1 Copyright © 2004 Pearson Education, Inc. Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions.
Probability Distributions ( 확률분포 ) Chapter 5. 2 모든 가능한 ( 확률 ) 변수의 값에 대해 확률을 할당하는 체계 X 가 1, 2, …, 6 의 값을 가진다면 이 6 개 변수 값에 확률을 할당하는 함수 Definition.
Section 5-1 Review and Preview.
Lecture Slides Elementary Statistics Twelfth Edition
Probability Distributions
Lecture Slides Elementary Statistics Eleventh Edition
Chapter 4 Probability Distributions
Chapter 5 Probability 5.2 Random Variables 5.3 Binomial Distribution
Lecture Slides Elementary Statistics Eleventh Edition
Mean, Variance, and Standard Deviation for the Binomial Distribution
Lecture Slides Essentials of Statistics 5th Edition
Lecture Slides Elementary Statistics Twelfth Edition
Section 5.1 Review and Preview.
Lecture Slides Elementary Statistics Eleventh Edition
Elementary Statistics
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Overview probability distributions
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Tenth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Random Variables Random variable a variable (typically represented by x) that takes a numerical value by chance. For each outcome of a procedure, x takes.
Lecture Slides Essentials of Statistics 5th Edition
Lecture Slides Essentials of Statistics 5th Edition
Presentation transcript:

Lecture Slides Essentials of Statistics 5th Edition and the Triola Statistics Series by Mario F. Triola

Chapter 5 Probability Distributions 5-1 Review and Preview 5-2 Probability Distributions 5-3 Binomial Probability Distributions 5-4 Parameters for Binomial Distributions

Key Concept This section introduces the important concept of a probability distribution, which gives the probability for each value of a variable that is determined by chance. Give consideration to distinguishing between outcomes that are likely to occur by chance and outcomes that are “unusual” in the sense they are not likely to occur by chance.

Random Variable Probability Distribution Random Variable a variable (typically represented by x) that has a single numerical value, determined by chance, for each outcome of a procedure Probability Distribution a description that gives the probability for each value of the random variable, often expressed in the format of a graph, table, or formula

Discrete and Continuous Random Variables Discrete Random Variable either a finite number of values or countable number of values, where “countable” refers to the fact that there might be infinitely many values, but that they result from a counting process Continuous Random Variable has infinitely many values, and those values can be associated with measurements on a continuous scale without gaps or interruptions. This chapter deals exclusively with discrete random variables - experiments where the data observed is a ‘countable’ value. Give examples. Following chapters will deal with continuous random variables. Page 201 of Elementary Statistics, 10th Edition

Probability Distribution: Requirements There is a numerical random variable x and its values are associated with corresponding probabilities. The sum of all probabilities must be 1. Each probability value must be between 0 and 1 inclusive. This chapter deals exclusively with discrete random variables - experiments where the data observed is a ‘countable’ value. Give examples. Following chapters will deal with continuous random variables. Page 201 of Elementary Statistics, 10th Edition

Graphs The probability histogram is very similar to a relative frequency histogram, but the vertical scale shows probabilities. page 202 of Elementary Statistics, 10th Edition Probability Histograms relate nicely to Relative Frequency Histograms of Chapter 2, but the vertical scale shows probabilities instead of relative frequencies based on actual sample results Observe that the probabilities of each random variable is also the same as the AREA of the rectangle representing the random variable. This fact will be important when we need to find probabilities of continuous random variables - Chapter 6.

Standard Deviation of a Probability Distribution Mean, Variance and Standard Deviation of a Probability Distribution Mean Variance Variance (shortcut) Standard Deviation In Chapter 3, we found the mean, standard deviation,variance, and shape of the distribution for actual observed experiments. The probability distribution and histogram can provide the same type information. These formulas will apply to ANY type of probability distribution as long as you have have all the P(x) values for the random variables in the distribution. In section 4 of this chapter, there will be special EASIER formulas for the special binomial distribution. The TI-83 and TI-83 Plus calculators can find the mean, standard deviation, and variance in the same way that one finds those values for a frequency table. With the TI-82, TI-81, and TI-85 calculators, one would have to multiply all decimal values in the P(x) column by the same factor so that there were no decimals and proceed as usual. Page 204 of Elementary Statistics, 10th Edition

Expected Value The expected value of a discrete random variable is denoted by E, and it represents the mean value of the outcomes. It is obtained by finding the value of Also called expectation or mathematical expectation Plays a very important role in decision theory page 208 of Elementary Statistics, 10th Edition

Example The following table describes the probability distribution for the number of girls in two births. Find the mean, variance, and standard deviation. x P(x) 0.25 1 0.50 2 Total Also called expectation or mathematical expectation Plays a very important role in decision theory page 208 of Elementary Statistics, 10th Edition

Example The following table describes the probability distribution for the number of girls in two births. Find the mean, variance, and standard deviation. x P(x) 0.25 0.00 1 0.50 2 Total 1.00 Also called expectation or mathematical expectation Plays a very important role in decision theory page 208 of Elementary Statistics, 10th Edition

Example The following table describes the probability distribution for the number of girls in two births. Find the mean, variance, and standard deviation. Also called expectation or mathematical expectation Plays a very important role in decision theory page 208 of Elementary Statistics, 10th Edition

Identifying Unusual Results Range Rule of Thumb According to the range rule of thumb, most values should lie within 2 standard deviations of the mean. We can therefore identify “unusual” values by determining if they lie outside these limits: Maximum usual value = Minimum usual value = Page 205-206 of Elementary Statistics, 10th Edition

Example – continued We found for families with two children, the mean number of girls is 1.0 and the standard deviation is 0.7 girls. Use those values to find the maximum and minimum usual values for the number of girls. Page 205-206 of Elementary Statistics, 10th Edition

Identifying Unusual Results Probabilities Rare Event Rule for Inferential Statistics If, under a given assumption (such as the assumption that a coin is fair), the probability of a particular observed event (such as 992 heads in 1000 tosses of a coin) is extremely small, we conclude that the assumption is probably not correct. The discussion of this topic in the text includes some difficult concepts, but it also includes an extremely important approach used often in statistics. Page 207-208 of Elementary Statistics, 10th Edition

Identifying Unusual Results Probabilities Using Probabilities to Determine When Results Are Unusual Unusually high: x successes among n trials is an unusually high number of successes if . Unusually low: x successes among n trials is an unusually low number of successes if . The discussion of this topic in the text includes some difficult concepts, but it also includes an extremely important approach used often in statistics. Page 207-208 of Elementary Statistics, 10th Edition