Homework Lesson 5.3_page 296 #58- 65 ALL
Practice Problems x2 – 16x + 15 x2 – 26x + 48
Factor by Grouping f(x)= 2x² – 7x – 15 2x² – 10x + 3x – 15 =0 -30 -10 3 -7 Note: you are on the right track because you have (x-5) in both parenthesis 2x(x – 5) + 3(x – 5) =0 (2x + 3)(x – 5)=0
Practice Problems f(x)= 3x2 – 16x – 12 f(x)= 4x2 + 5x – 6 Solutions: a) (x-6)(3x+2) (x+2)(4x-3) (2x+7)(2x-7) (x+4)(2x+3) f(x)= 3x2 – 16x – 12 f(x)= 4x2 + 5x – 6 f(x)= 4x2 – 49 f(x)= 2x2 + 11X + 12
SHORTCUTS a2 + 2ab + b2 (a+b)2 a2 - 2ab + b2 (a - b)2 Example: 25x2 + 90x + 81 (5x+9)(5x+9) (5x + 9)2 a2 - 2ab + b2 (a - b)2 Example: 9x2 – 42x + 49 (3x-7)(3x-7) (3x – 7)2 a2 - b2 (a+b)(a - b) Example: x2 – 64 (x + 8)(x – 8)
Zero-Product Property Zero-Product Property: If pq= 0, then p = 0 or q = 0 ax2 + bx + c = 0 is called the general form of a quadratic equation
Example given f(x) = x2 - 36, find the solution
Example given 15x2 = 7x + 2, find the solution