Section 5 – Solving Trig Equations

Slides:



Advertisements
Similar presentations
Pre-calc w-up 1/16 2. Simplify cos 2 x tan 2 x + cos 2 x Answers: / cos50 o 3. 1.
Advertisements

6.2 Trigonometric Integrals. How to integrate powers of sinx and cosx (i) If the power of cos x is odd, save one cosine factor and use cos 2 x = 1 - sin.
Remember! For a square root, the index of the radical is 2.
7.4.2 – Solving Trig Equations, Cont’d. Sometimes, we may have more than one trig function at play while trying to solve Like having two variables.
Section 7.4 Basic Trigonometric Equations
Multiple Angle Formulas ES: Demonstrating understanding of concepts Warm-Up: Use a sum formula to rewrite sin(2x) in terms of just sin(x) & cos(x). Do.
Solving Trigonometric Equations Involving Multiple Angles 6.3 JMerrill, 2009.
Warm Up Sign Up. AccPreCalc Lesson 27 Essential Question: How are trigonometric equations solved? Standards: Prove and apply trigonometric identities.
Chapter 6 Trig 1060.
Barnett/Ziegler/Byleen Chapter 4
To add fractions, you need a common denominator. Remember!
Verifying Trig Identities Today you will be verifying trigonometric identities to prove that a trigonometric equation is true for any replacement of the.
Standard 10a: Prove Trigonometric Identities and use them to simplify Trigonometric equations.
Section 7.5 Trigonometric Equations Objective: To solve linear and quadratic trigonometric equations.
While you wait: For a-d: use a calculator to evaluate:
T.3.3 – Trigonometric Identities – Double Angle Formulas
7.2 Trigonometric Integrals Tues Jan 12 Do Now Evaluate.
7.4.1 – Intro to Trig Equations!. Recall from precalculus… – Expression = no equal sign – Equation = equal sign exists between two sides We can combine.
Precalculus Chapter 5.1 Using Fundamental Identities Objectives: Recognize and write trig identities Use trig identities to evaluate, simplify, and rewrite.
Clicker Question 1 What is  x sin(3x) dx ? – A. (1/3)cos(3x) + C – B. (-1/3)x cos(3x) + (1/9)sin(3x) + C – C. -x cos(3x) + sin(3x) + C – D. -3x cos(3x)
2.3 solving multi-step equations. Review combining like terms Term-- the individual item(s) being added or subtracted. Example: 3x + 5x Example: 5y –
6-2 Solving Systems Using Substitution Hubarth Algebra.
Jeopardy Simplify Trig expressions Verify Trig Identities Find all Solutions Solutions with multiple angles Solutions with factoring Q $100 Q $200 Q $300.
Lesson 44 – Trigonometric Identities – Double Angle Formulas
Pre-calc w-up 2/16 2. Simplify cos2 x tan2 x + cos2x
Do Now Solve for x: 1. x + 3x – 4 = 2x – 7 2. (x + 1)2 – 3 = 4x + 1.
Solving Trigonometric Equations
Algebra 1 Notes: Lesson 1-6: Commutative and Associative Properties
MATH 1330 Section 6.3.
MATH 1330 Section 6.3.
Ch. 5 – Analytic Trigonometry
Graphs of Trigonometric Functions
9.1: Identities and Proofs
Ch 5.2.
Quiz.
6-2 Solving Systems Using Substitution
Solving Trigonometric Equations
7.1 – Basic Trigonometric Identities and Equations
Section 2 – Solving Systems of Equations in Three Variables
Chapter 3 Section 3.
Basic Trigonometric Identities and Equations
The Chain Rule Section 4 Notes.
Warm-up: 1) Given sin = ½ and and csc  > 0 can you find the angle measure  definitively? Given cosx = − And sinx < 0 find the other five trigonometric.
18. More Solving Equations
Warm-up: Find sin(195o) HW : pg. 501(1 – 18).
Pythagorean Identities
Pyrhagorean Identities
Basic Trigonometric Identities and Equations
Clicker Question 1 What is x sin(3x) dx ? A. (1/3)cos(3x) + C
8.1: Graphical Solutions of Trig Functions
Using Fundamental Identities
Basic Trigonometric Identities and Equations
MATH 1330 Section 6.3.
3 step problems Home End 1) Solve 2Sin(x + 25) = 1.5
Graphing Other Trig. Functions
Analytic Trigonometry
Basic Trigonometric Identities
5.4 Sum and Difference Formulas
Power-reducing & Half angle identities
Section Solving Linear Systems Algebraically
Section 8.2 Part 2 Solving Systems by Substitution
Ch 5.5.
Algebra 1 09/21/16 EQ: How do I solve equations with variables on both sides? HW: Due Friday pg. 95 # 1-33 all Bring textbooks tomorrow Quiz on Friday.
ALGEBRA TWO Section Writing Equations of Lines
Section 1 – Solving Systems of Equations in Two Variables
Section 5 – Solving Right Triangles
Section 6 – Rational Equations
Section 4 – Writing Linear Equations
Warm-up: (1 − sin 2 x) sec 2 x = cos 2 x sec 2 x = 1
Objective: Finding solutions of trigonometric equations.
Presentation transcript:

Section 5 – Solving Trig Equations Chapter 7 Section 5 – Solving Trig Equations

Trigonometric Equations You solve trig equations the same way you solve any other algebraic equations, with the added piece of LOOKING FOR IDENTITIES!!! Substitute identities to simplify wherever possible

Trigonometric Equations Realize, any algebra is fair game! In addition to identities, You may have to use: Distributive Property Factoring Rationalizing Denominators Etc. + remember to look for ALL Possible solutions!!

Examples EX 1: Solve (sinx)(cosx)-(1/2)(cosx)=0 EX 2: Solve cos2x – cosx + 1 = sin2x EX 3: Solve 2sec2x – tan4x = -1

Assignment Chapter 7, Section 5 pgs 459-461 #18-26E,32,38-40E