“Teach A Level Maths” Vol. 1: AS Core Modules

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 2: A2 Core Modules
Advertisements

© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 22a: Integrating the Simple Functions.
28: Harder Stationary Points © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 2: A2 Core Modules
42: Differentiating Parametric Equations © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
12: The Quotient Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
21:The Factor Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
11: The Rule for Differentiation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
31: Arithmetic Sequences and Series © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
3: Quadratic Expressions Expanding Brackets and Factorisation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
4: Translations and Completing the Square © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
13: Stationary Points © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
12: Tangents and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
IBSL Maths Definite Integration © Christine Crisp.
3: Quadratic Expressions Expanding Brackets and
Laws of Indices.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
18: Circles, Tangents and Chords
“Teach A Level Maths” Vol. 1: AS Core Modules
Definite Integration.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
17: Circles, Lines and Tangents
47: More Logarithms and Indices
18: Circles, Tangents and Chords
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
11: Proving Trig Identities
“Teach A Level Maths” Vol. 2: A2 Core Modules
17: Circles, Lines and Tangents
“Teach A Level Maths” Vol. 2: A2 Core Modules
Presentation transcript:

“Teach A Level Maths” Vol. 1: AS Core Modules 25: Definite Integration © Christine Crisp

Module C1 Module C2 AQA Edexcel MEI/OCR OCR "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

The numbers on the integral sign are called the limits of integration is a definite integral The numbers on the integral sign are called the limits of integration

Evaluating the Definite Integral The definite integration results in a value. e.g.1 Find the indefinite integral but omit C

Evaluating the Definite Integral The definite integration results in a value. e.g.1 Draw square brackets and hang the limits on the end

Evaluating the Definite Integral The definite integration results in a value. e.g.1 Replace x with the top limit the bottom limit

Evaluating the Definite Integral The definite integration results in a value. e.g.1 Subtract and evaluate

Evaluating the Definite Integral The definite integration results in a value. e.g.1 So,

SUMMARY The method for evaluating the definite integral is: Find the indefinite integral but omit C Draw square brackets and hang the limits on the end Replace x with the top limit the bottom limit Subtract and evaluate

Evaluating the Definite Integral e.g. 2 Find Solution: Indefinite integral but no C

Evaluating the Definite Integral e.g. 2 Find Solution: Substitute for x: top limit minus bottom limit Simplify

Evaluating the Definite Integral In this example, if we can’t use a calculator, we can save time by collecting terms from both brackets. We must be very careful with the signs

Exercises 1. Find 2. Find

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

Evaluating the Definite Integral The definite integration results in a value. So, e.g.1

SUMMARY Find the indefinite integral but omit C Draw square brackets and hang the limits on the end Replace x with the top limit the bottom limit Subtract and evaluate The method for evaluating the definite integral is: